Copyright R. Janow Spring 2014 1 Physics 121 - Electricity and Magnetism Lecture 05 -Electric Potential Y&F Chapter 23 Sect. 1-5 Electric Potential Energy.

Slides:



Advertisements
Similar presentations
POTENTIAL February 1, 2009 This Week We complete Gauss’s Law We begin the topic of POTENTIAL – Chapter 25. Problem Session Wednesday Morning Examination.
Advertisements

Electrical Energy and Electric Potential AP Physics C.
Electric Potential Energy versus Electric Potential
Chapter 22 Electric Potential.
Physics 121: Electricity & Magnetism – Lecture 5 Electric Potential Dale E. Gary Wenda Cao NJIT Physics Department.
Physics 1502: Lecture 5 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Topic 9.3 Electric Field, Potential, and Energy
1/22/07184 Lecture 81 PHY 184 Spring 2007 Lecture 8 Title: Calculations on Electrostatics.
Flux Definition (gravitational example) Gaussian Surfaces
Norah Ali Al-moneef king saud university
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Copyright © 2009 Pearson Education, Inc. Lecture 4 – Electricity & Magnetism b. Electric Potential.
AP Physics: Electricity & Magnetism
1 Lecture 4 Electric Potential and/ Potential Energy Ch. 25 Review from Lecture 3 Cartoon - There is an electric energy associated with the position of.
Chapter 21 & 22 Electric Charge Coulomb’s Law This force of repulsion or attraction due to the charge properties of objects is called an electrostatic.
Lecture 3 Electrical Energy Chapter 16.1  16.5 Outline Potential Difference Electric Potential Equipotential Surface.
Recap & Definition of Electric Field Electric Field Lines
Electric Energy and Capacitance
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Chapter 24. Electric Potential
Electrical Energy and Capacitance
EXERCISES Try roughly plotting the potential along the axis for some of the pairs Exercises on sheet similar to this.
Chapter 25 Electric Potential Electrical Potential and Potential Difference When a test charge is placed in an electric field, it experiences a.
Electric Charge and Electric Field
ELECTRIC POTENTIAL September 19, 2008 Picture a Region of space Where there is an Electric Field Imagine there is a particle of charge q at some location.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Electric Energy and Capacitance
The Electric Potential
110/29/2015 Physics Lecture 4  Electrostatics Electric flux and Gauss’s law Electrical energy potential difference and electric potential potential energy.
ELECTRIC POTENTIAL September 13, 2006 Goings On For the Next Few Days Quiz Today – Gauss/Electric Field Quiz Today – Gauss/Electric Field Today – Begin.
Electric Potential Chapter 25. ELECTRIC POTENTIAL DIFFERENCE The fundamental definition of the electric potential V is given in terms of the electric.
Chapter 25 Electric Potential.
Chapter 25 Electric Potential. Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will.
Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley PowerPoint ® Lecture prepared by Richard Wolfson Slide Electric.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Obtaining Electric Field from Electric Potential Assume, to start, that E has only an x component Similar statements would apply to the y and z.
Chapter 23 Electric Potential.
Electric Potential & Electric Potential Energy. Electric Potential Energy The electrostatic force is a conservative (=“path independent”) force The electrostatic.
AP Physics C Montwood High School R. Casao
CHAPTER 25 : ELECTRIC POTENTIAL
Electrical Energy And Capacitance
Wednesday, Sep. 14, PHYS Dr. Andrew Brandt PHYS 1444 – Section 04 Lecture #5 Chapter 21: E-field examples Chapter 22: Gauss’ Law Examples.
Lecture 5 Dr. Lobna Mohamed Abou El-Magd The Electric Potential.
Lecture 19 Electric Potential
Chapter 25 – Electric Potential
Electric Potential.
Chapter 25 Electric Potential. Electrical Potential Energy The electrostatic force is a conservative force, thus It is possible to define an electrical.
Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #7 Wednesday, Feb. 8, 2012 Dr. Alden Stradeling Chapter.
1 Lecture 4 Work, Electric Potential and Potential Energy Ch. 25 Topics Work, electric potential energy and electric potential Calculation of potential.
1 Electric Potential Reading: Chapter 29 Chapter 29.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 17 Lecture Outline.
Chapter 25 Electric Potential. Like gravity, the electric force is conservative: it has a Potential Energy. A charge in an electric field has electric.
Chapter 22 Electric Fields The Electric Field: The Electric Field is a vector field. The electric field, E, consists of a distribution of vectors,
Chapter 25 Electric Potential 25.1 Potential Difference and Electric Potential 25.2 Potential Differences in a Uniform Electric Field 25.3 Electric Potential.
1 Chapter 25 Electric Potential. 2 Electrical Potential Energy When a test charge is placed in an electric field, it experiences a force F = q o E The.
Copyright R. Janow Fall Physics Electricity and Magnetism Lecture 05 -Electric Potential Y&F Chapter 23 Sect. 1-5 Electric Potential Energy.
Chapter 25 Electric Potential.
Electric Potential Energy versus Electric Potential
Chapter 23 Electric Potential
Chapter 25 Electric Potential.
Electric Potential Energy versus Electric Potential
Chapter 25 Electric Potential.
Electric Potential Energy versus Electric Potential
Electric Potential Energy versus Electric Potential
Chapter 23 Electric Potential
Chapter 29 Electric Potential Reading: Chapter 29.
Chapter 25 - Summary Electric Potential.
Electric Potential Energy versus Electric Potential
Electrical Energy and Electric Potential
Electric Potential Energy versus Electric Potential
Presentation transcript:

Copyright R. Janow Spring Physics Electricity and Magnetism Lecture 05 -Electric Potential Y&F Chapter 23 Sect. 1-5 Electric Potential Energy versus Electric Potential Calculating the Potential from the Field Potential due to a Point Charge Equipotential Surfaces Calculating the Field from the Potential Potentials on, within, and near Conductors Potential due to a Group of Point Charges Potential due to a Continuous Charge Distribution Summary

Copyright R. Janow Spring 2014 Electrostatics: Two spheres, different radii, one with charge wire Connect wire between spheres, then disconnect it Q 1f = ?? Q 2f = ?? Are final charges equal? What determines how charge redistributes itself? r 1 = 10 cm r 2 = 20 cm Q 10 = 10 C Q 20 = 0 C Initially Mechanical analogy: Water pressure Open valve, water flows What determines final water levels? X P 1 = r gy 1 P 2 = r gy 2 gy = PE/unit mass

Copyright R. Janow Spring 2014 ELECTRIC POTENTIAL Units, Dimensions: Potential Energy U: Joules Potential V : [U]/[q] Joules/C. = VOLTS Synonyms for V: both [F][d]/[q], and [q][E][d]/[q] = N.m / C. Units of field are [V]/[d] = Volts / meter – same as N/C. Closely related to Electrostatic Potential Energy……but……  PE: ~ work done ( = force x displacement)  V: ~ work done/unit charge ( = field x displacement) Potential summarizes effect of charge on a distant point without specifying a test charge there (Like field, unlike PE) Scalar field  Easier to use than E (vector) Both  PE and  V imply a reference level Both PE and V are conservative forces/fields, like gravity Can determine motion of charged particles using: Second Law, F = qE or PE, Work-KE theorem &/or mechanical energy conservation Potential Energy due to an electric field per unit (test) charge

Copyright R. Janow Spring 2014 Reminder: Work Done by a Constant Force 5-1: In the four examples shown in the sketch, a force F acts on an object and does work. In all four cases, the force has the same magnitude and the displacement of the object is to the right and has the same magnitude. Rank the cases in order of the work done by the force on the object, from most positive to the most negative. I II III IV A.I, IV, III, II B.II, I, IV, III C.III, II, IV, I D.I, IV, II, III E.III, IV, I, II DsDs

Copyright R. Janow Spring 2014 Work Done by a Constant Force (a reminder) The work W done by a constant external force on it is the product of: the magnitude F of the force the magnitude Δs of the displacement of the point of application of the force and cos(θ), where θ is the angle between force and displacement vectors: II I IIIIV DrDr If the force varies in direction and/or magnitude along the path: Example of a “Path Integral” Result may depend on path

Copyright R. Janow Spring 2014 Definitions: Electrostatic Potential Energy versus Potential POTENTIAL ENERGY DIFFERENCE : Charge q 0 moves from i to f along ANY path POTENTIAL DIFFERENCE: Potential is potential energy per unit charge ( Evaluate integrals on ANY path from i to f ) (from basic definition) Recall: Conservative Fields definition Work done BY THE FIELD on a test charge moving from i to f does not depend on the path taken. Work done around any closed path equals zero. (basic definition) Path Integral

Copyright R. Janow Spring 2014 Only differences in electric potential and PE are meaningful: –Relative reference: Choose arbitrary zero reference level for ΔU or ΔV. –Absolute reference: Set U i = 0 with all charges infinitely far apart –Volt (V) = SI Unit of electric potential –1 volt = 1 joule per coulomb = 1 J/C –1 J = 1 VC and 1 J = 1 N m Electric field units – new name: –1 N/C = (1 N/C)(1 VC/1 Nm) = 1 V/m A convenient energy unit: electron volt – 1 eV = work done moving charge e through a 1 volt potential difference = (1.60× C)(1 J/C) = 1.60× J Some distinctions and details The field depends on a charge distribution elsewhere). A test charge q 0 moved between i and f gains or loses potential energy DU.  U does not depend on path  V also does not depend on path and also does not depend on |q 0 | (test charge). Use Work-KE theorem to link potential differences to motion

Copyright R. Janow Spring : In the figure, suppose we exert a force and move the proton from point i to point f in a uniform electric field directed as shown. Which statement of the following is true? Work and PE : Who/what does positive or negative work? A. Electric field does positive work on the proton. Electric potential energy of the proton increases. B. Electric field does negative work on the proton. Electric potential energy of the proton decreases. C. Our force does positive work on the proton. Electric potential energy of the proton increases. D. Our force does positive work on the proton. Electric potential energy of the proton decreases. E. The changes cannot be determined. E if Hint: which directions pertain to displacement and force?

Copyright R. Janow Spring 2014 EXAMPLE: Find change in potential as test charge +q 0 moves from point i to f in a uniform field DU and DV depend only on the endpoints ANY PATH from i to f gives same results E i f o DxDx EXAMPLE: CHOOSE A SIMPLE PATH THROUGH POINT “O” Displacement i  o is normal to field (path along equipotential) External agent must do positive work on positive test charge to move it from o  f - units of E can be volts/meter E field does negative work What are signs of D U and  V if test charge is negative? To convert potential to/from PE just multiply/divide by q 0 uniform field

Copyright R. Janow Spring 2014 Potential Function for a Point Charge Charges are infinitely far apart  choose V infinity = 0 (reference level)  U = work done on a test charge as it moves to final location  U = q 0  V Field is conservative  choose most convenient path = radial Similarly, for potential ENERGY: (use same method but integrate force) Shared PE between q and Q Overall sign depends on both signs Find potential V(R) a distance R from a point charge q : Positive for q > 0, Negative for q<0 Inversely proportional to r 1 NOT r 2

Copyright R. Janow Spring 2014 Equi-potential surfaces: Voltage and potential energy are constant; i.e. V=0, U=0 No change in potential energy along an equi-potential Zero work is done moving charges along an equi-potential Electric field must be perpendicular to tangent of equipotential and Equipotentials are perpendicular to the electric field lines q V fi V i > V f DV = 0 CONDUCTORS ARE ALWAYS EQUIPOTENTIALS - Charge on conductors moves to make E inside = 0 - E surf is perpendicular to surface so DV = 0 along any path on or in a conductor E is the gradient of V

Copyright R. Janow Spring 2014 Examples of equipotential surfaces Uniform Field Equipotentials are planes (evenly spaced) Point charge or outside sphere of charge Equipotentials are spheres (not evenly spaced) Dipole Field Equipotentials are not simple shapes

Copyright R. Janow Spring 2014 q The field E(r) is the gradient of the potential Component of ds on E produces potential change Component of ds normal to E produces no change Field is normal to equipotential surfaces For path along equipotential, D V = 0 EXAMPLE: UNIFORM FIELD E – 1 dimension E DsDs Gradient = spatial rate of change

Copyright R. Janow Spring 2014 Potential difference between oppositely charged conductors (parallel plate capacitor) Equal and opposite surface charges All charge resides on inner surfaces (opposite charges attract) A positive test charge +q gains potential energy  U = q  V as it moves from - plate to + plate along any path (including external circuit) Example: Find the potential difference  V across the capacitor, assuming:  = 1 nanoCoulomb/m 2  x = 1 cm & points from negative to positive plate Uniform field E ++ -- L xx E = 0 VfVf ViVi

Copyright R. Janow Spring 2014 Comparison of point charge and mass formulas for vector and scalar fields FORCE FIELD VECTORS Gravitation Electrostatics force/unit mass (acceleration) force/unit charge (n/C) Fields and forces ~ 1/R 2 but Potentials and PEs ~ 1/R 1 SCALARS Gravitation Electrostatics POTENTIAL ENERGYPOTENTIAL PE/unit mass (not used often) PE/unit charge

Copyright R. Janow Spring 2014 Visualizing the potential function V(r) for a positive point charge (2 D) For q negative V is negative (funnel) r V(r) 1/r r

Copyright R. Janow Spring 2014 Example: Two spheres, different radii, one charged to 90,000 V. r 1 = 10 cm r 2 = 20 cm V 10 = 90,000 V. V 20 = 0 V. Q 20 = 0 V. wire Connect wire between spheres – charge moves Initially: Find the final charges: Find the final potential(s): Conductors are always equipotentials Conductors come to same potential Charge redistributes to make it so

Copyright R. Janow Spring 2014 Potential inside a hollow conducting shell V c = V b (shell is an equipotential) = 18,000 Volts on surface R = 10 cm Shell can be any closed surface (sphere or not) Find potential V a at point “a” inside shell Definition: Apply Gauss’ Law: choose GS just inside shell: E(r) r E inside =0 R E outside = kq / r 2 V(r) r V inside =V surf R V outside = kq / r Potential is continuous across surface – field is not R a c b d

Copyright R. Janow Spring 2014 Potential due to a group of point charges Use superposition for n point charges The sum is an algebraic sum, not a vector sum. Reminder: For the electric field, by superposition, for n point charges E may be zero where V does not equal to zero. V may be zero where E does not equal to zero.

Copyright R. Janow Spring 2014 Examples: potential due to point charges Note: E may be zero where V does not = 0 V may be zero where E does not = 0 Use Superposition DIPOLE – Otherwise positioned as above +q -q P d Let q = 1 nC, d = 2 m: TWO EQUAL CHARGES – Point P at the midpoint between them +q P d F and E are zero at P but work would have to be done to move a test charge to P from infinity. Let q = 1 nC, d = 2 m:

Copyright R. Janow Spring 2014 Another example: square with charges on corners q q -q a d d a a a Find E & V at center point P P Another example: same as above with all charges positive Another example: find work done by 12 volt battery in 1 minute as 1 ampere current flows to light lamp + - E i

Copyright R. Janow Spring : Which of the following figures have V=0 and E=0 at the red point? Electric Field and Electric Potential A q q q -q B E q D q q q q q q C

Copyright R. Janow Spring 2014 Method for finding potential function V at a point P due to a continuous charge distribution 1. Assume V = 0 infinitely far away from charge distribution (finite size) 3. At point P, dV is the differential contribution to the potential due to a point- like charge dq located in the distribution. Use symmetry. 2. Find an expression for dq, the charge in a “small” chunk of the distribution, in terms of, , or   Typical challenge: express above in terms of chosen coordinates 4. Use “superposition”. Add up (integrate) the contributions over the whole charge distribution, varying the displacement r as needed. Scalar V P. 5. Field E can be gotten from potential by taking the “gradient”: Rate of potential change perpendicular to equipotential

Copyright R. Janow Spring 2014 Example 23.11: Potential along Z-axis of a ring of charge x y z r P z a f dq Q = charge on the ring l = uniform linear charge density = Q/2pa r = distance from dq to “P” = [a 2 + z 2 ] 1/2 ds = arc length = ad  FIND ELECTRIC FIELD USING GRADIENT (along z by symmetry) E  0 as z  0 (for “a” finite) E  point charge formula for z >> a As Before All scalars - no need to worry about direction As z  0, V  kQ/a As a  0 or z  inf, V  point charge Almost point charge formula

Copyright R. Janow Spring 2014 A rod of length L located parallel to the x axis has a uniform linear charge density λ. Find the electric potential at a point P located on the y axis a distance d from the origin. Example: Potential Due to a Charged Rod Check by differentiating Integrate over the charge distribution Result Start with

Copyright R. Janow Spring 2014 Example 23.10: Potential near an infinitely long charged line or charged conducting cylinder Near line or outside cylinder r > R E is radial. Choose radial integration path i  f Above is negative for r f > r i with positive Inside conducting cylinder r < R E is radial. Choose radial integration path i  f Potential inside is constant and equals surface value

Copyright R. Janow Spring 2014 Example 23.12: Potential at a symmetry point near a finite line of charge Uniform linear charge density Charge in length dy Potential of point charge Standard integral from tables: Limiting cases: Point charge formula for x >> 2a Example formula for near field limit x << 2a

Copyright R. Janow Spring 2014 Example: Potential on the symmetry axis of a charged disk  R x z  P a dA=ad  da r Q = charge on disk whose radius = R. Uniform surface charge density  = Q/4  R 2 Disc is a set of rings, each of them da wide in radius For one of the rings: Integrate twice: first on azimuthal angle f from 0 to 2p which yields a factor of 2p then on ring radius a from 0 to R Use Anti- derivative: Double integral (note: ) “Near field” (z<<R): disc looks like infinite sheet of charge “Far field” (z>>R): disc looks like point charge