Intelligent Database Systems Lab Presenter: Jheng, Jian-Jhong Authors: Hansenclever F. Bassani, Aluizio F. R. Araujo 2015 TNNLS Dimension Selective Self-Organizing.

Slides:



Advertisements
Similar presentations
FMRI Methods Lecture 10 – Using natural stimuli. Reductionism Reducing complex things into simpler components Explaining the whole as a sum of its parts.
Advertisements

Intelligent Database Systems Lab Presenter : WU, MIN-CONG Authors : KADIM TA¸SDEMIR, PAVEL MILENOV, AND BROOKE TAPSALL 2011,IEEE Topology-Based Hierarchical.
Principal Component Analysis Based on L1-Norm Maximization Nojun Kwak IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008.
Intelligent Database Systems Lab Presenter : YU-TING LU Authors : Harun Ug˘uz 2011.KBS A two-stage feature selection method for text categorization by.
Intelligent Database Systems Lab Presenter: WU, JHEN-WEI Authors: Jorge Gorricha, Victor Lobo CG Improvements on the visualization of clusters in.
Intelligent Database Systems Lab Advisor : Dr.Hsu Graduate : Keng-Wei Chang Author : Gianfranco Chicco, Roberto Napoli Federico Piglione, Petru Postolache.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors : Christos Ferles ∗, Andreas Stafylopatis NN Self-Organizing Hidden Markov Model.
“Random Projections on Smooth Manifolds” -A short summary
EE 290A: Generalized Principal Component Analysis Lecture 4: Generalized Principal Component Analysis Sastry & Yang © Spring, 2011EE 290A, University of.
EE 290A: Generalized Principal Component Analysis Lecture 5: Generalized Principal Component Analysis Sastry & Yang © Spring, 2011EE 290A, University of.
Adaptive Offset Subspace Self- Organizing Map with an Application to Handwritten Digit Recognition Huicheng Zheng, Pádraig Cunningham and Alexey Tsymbal.
On the Basis Learning Rule of Adaptive-Subspace SOM (ASSOM) Huicheng Zheng, Christophe Laurent and Grégoire Lefebvre 13th September 2006 Thanks to the.
COLOR MORPHOLOGY CENG 566 FINAL PROJECT Sezen ERDEM.
Dimension reduction : PCA and Clustering by Agnieszka S. Juncker Part of the slides is adapted from Chris Workman.
Face Recognition Using Neural Networks Presented By: Hadis Mohseni Leila Taghavi Atefeh Mirsafian.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Human eye sclera detection and tracking using a modified.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology On multidimensional scaling and the embedding of self-organizing.
Intelligent Database Systems Lab Presenter: MIN-CHIEH HSIU Authors: NHAT-QUANG DOAN ∗, HANANE AZZAG, MUSTAPHA LEBBAH 2013 NN Growing self-organizing trees.
Artificial Neural Networks Dr. Abdul Basit Siddiqui Assistant Professor FURC.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Adaptive nonlinear manifolds and their applications to pattern.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Exploiting Data Topology in Visualization and Clustering.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Miin-Shen Yang a*, Wen-Liang Hung b, De-Hua Chen a 2012, FSS Self-organizing map.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Visualizing Ontology Components through Self-Organizing.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Batch kernel SOM and related Laplacian methods for social network analysis Presenter : Lin, Shu-Han Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Extracting meaningful labels for WEBSOM text archives Advisor.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Virus Pattern Recognition Using Self-Organization Map.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Kerstin Bunte, Barbara Hammer, Thomas Villmann, Michael Biehl, Axel Wismuller 2011,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Keng-Wei Chang Author: Yehuda.
Intelligent Database Systems Lab Presenter: YAN-SHOU SIE Authors: RAMIN PASHAIE, STUDENT MEMBER, IEEE, AND NABIL H. FARHAT, LIFE FELLOW, IEEE TNN.
Cube Kohonen Self-Organizing Map (CKSOM) Model
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Exploiting Data Topology in Visualization and Clustering.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Medhdi Khashei, Mehdi Bijari 2011, ASOC A novel hybridization of artificial neural.
SOM-based Data Visualization Methods Author:Juha Vesanto Advisor:Dr. Hsu Graduate:ZenJohn Huang IDSL seminar 2002/01/24.
Intelligent Database Systems Lab Presenter : BEI-YI JIANG Authors : GUENAEL CABANES, YOUNES BENNANI, DOMINIQUE FRESNEAU ELSEVIER Improving the Quality.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. TurSOM: A Turing Inspired Self-organizing Map Presenter: Tsai Tzung Ruei Authors: Derek Beaton, Iren.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Externally growing self-organizing maps and its application to database visualization and exploration.
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Peter Sarlin* 2013.PRL Decomposing the global financial crisis: A Self-Organizing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 The Evolving Tree — Analysis and Applications Advisor.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : CHRISTOS BOURAS, VASSILIS TSOGKAS 2012, KBS A clustering technique for news articles.
Optimal Component Analysis Optimal Linear Representations of Images for Object Recognition X. Liu, A. Srivastava, and Kyle Gallivan, “Optimal linear representations.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors : E.J. Palomo, J. North, D. Elizondo, R.M. Luque, T. Watson NN Application of growing.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Eghbal G. Mansoori 2011,IEEE FRBC: A Fuzzy Rule-Based Clustering Algorithm.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Juan D.Velasquez Richard Weber Hiroshi Yasuda 國立雲林科技大學 National.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Rival-Model Penalized Self-Organizing Map Yiu-ming Cheung.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Mining massive document collections by the WEBSOM method Presenter : Yu-hui Huang Authors :Krista Lagus,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology O( ㏒ 2 M) Self-Organizing Map Algorithm Without Learning.
Supervisor: Nakhmani Arie Semester: Winter 2007 Target Recognition Harmatz Isca.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Adaptive FIR Neural Model for Centroid Learning in Self-Organizing.
Intelligent Database Systems Lab Presenter : YAN-SHOU SIE Authors : MARCO PIASTRA NN Self-organizing adaptive map: Autonomous learning of curves.
Intelligent Database Systems Lab Presenter: NENG-KAI, HONG Authors: HUAN LONG A, ZIJUN ZHANG A, ⇑, YAN SU 2014, APPLIED ENERGY Analysis of daily solar.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Self Organizing Maps and Bit Signature: a study applied.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Christopher C. Yang and Tobun Dorbin Ng TSMCA Analyzing and Visualizing Web Opinion.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author : Yongqiang Cao Jianhong Wu 國立雲林科技大學 National Yunlin University of Science.
ViSOM - A Novel Method for Multivariate Data Projection and Structure Visualization Advisor : Dr. Hsu Graduate : Sheng-Hsuan Wang Author : Hujun Yin.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Community self-Organizing Map and its Application to Data Extraction Presenter: Chun-Ping Wu Authors:
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2005.ACM GECCO.8.Discriminating and visualizing anomalies.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Junping Zhang, Hua Huang and Jue Wang IEEE INTELLIGENT SYSTEMS Manifold Learning.
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Andrés Ortiz, Juan M. Górriz, Javier Ramírez, F.J. Martínez-Murcia 2013.PRL LVQ-SVM.
Intelligent Database Systems Lab Presenter: YU-TING LU Authors: Vittorio Carlei, Massimiliano Nuccio PRL Mapping industrial patterns in spatial agglomeration:
Intelligent Database Systems Lab Presenter: HONG, CHIA-TSE Authors:Yang Liu, Yan Liu, Keith C. C. Chan, Kien A. Hua TONNAL. Hybrid Manifold Embedding.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Emilio Corchado, Bruno Baruque 2012 NeurCom WeVoS-ViSOM: An ensemble summarization.
Intelligent Database Systems Lab Presenter : YU-TING LU Authors : Hsin-Chang Yang, Han-Wei Hsiao, Chung-Hong Lee IPM Multilingual document mining.
Intelligent Database Systems Lab Presenter : CHANG, SHIH-JIE Authors : Chun Fu Lin, Yu-chu Yeh, Yu Hsin Hung, Ray I Chang 2013.CE. Data mining for providing.
Motion Segmentation CAGD&CG Seminar Wanqiang Shen
Motion Segmentation with Missing Data using PowerFactorization & GPCA
Generalized Principal Component Analysis CVPR 2008
Progress Report Alvaro Velasquez.
Presentation transcript:

Intelligent Database Systems Lab Presenter: Jheng, Jian-Jhong Authors: Hansenclever F. Bassani, Aluizio F. R. Araujo 2015 TNNLS Dimension Selective Self-Organizing Maps With Time-Varying Structure for Subspace and Projected Clustering

Intelligent Database Systems Lab Outlines Motivation Objectives Related Work Methodology Experiments Conclusions Comments 2

Intelligent Database Systems Lab Motivation

Intelligent Database Systems Lab 4 Original SOM subspace clustering It was not designed to deal with subspace clustering.

Intelligent Database Systems Lab 5 DSSOM The fixed topology of SOM and DSSOM requires deep knowledge of the date to be defined.

Intelligent Database Systems Lab 6 SOM-TVS However, certain adaptations to this approach are required for dealing with subspace clustering.

Intelligent Database Systems Lab 7 LARFDS SOM Important modifications with respect to DSSOM.

Intelligent Database Systems Lab Objectives Important modifications with respect to DSSOM. 8

Intelligent Database Systems Lab S UBSPACE AND P ROJECTED C LUSTERING

Intelligent Database Systems Lab S UBSPACE C LUSTERING

Intelligent Database Systems Lab P ROJECTED C LUSTERING Projected clustering seeks to assign each point to a unique cluster, but clusters may exist in different subspaces. The general approach is to use a special distance function together with a regular clustering algorithm.

Intelligent Database Systems Lab Generalized Principal Components Analysis (GPCA) Sparse Subspace Clustering (SSC) Adaptive Resonance Theory (ART) Local adaptive receptive field self-organizing map for image color segmentation (LARFSOM) Related Work 12

Intelligent Database Systems Lab GPCA PCA GPCA GPCA is an algebraic geometric method for clustering data not necessarily in independent linear subspaces.

Intelligent Database Systems Lab SSC SSC is based on the idea of writing a point (x j ) as a linear or affine combination of neighbor data points. It uses the principle of sparsity to choose any of the remaining data points as a possible neighbor.

Intelligent Database Systems Lab Methodology

Intelligent Database Systems Lab

EXPERIMENTS

Intelligent Database Systems Lab

Conclusions The behavior of LARFDSSOM was shown to have led to a significant improvement over DSSOM in a number of points. It does not need to know the exact number of clusters. Improvement entails the computational cost. Improvement is the clustering quality. 28

Intelligent Database Systems Lab Comments 29