2: Application Layer 1 1DT066 Distributed Information System Chapter 3 Transport Layer.

Slides:



Advertisements
Similar presentations
Introduction 1 Lecture 13 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
Advertisements

Transport Layer3-1 TCP. Transport Layer3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 16 Omar Meqdadi Department of Computer Science and Software Engineering University.
Transport Layer3-1 Homework r Chapter 2#10,13-18 r Due Wed September 17.
CHAPTER 3. Transport Layer 3-2 Transport services and protocols provide logical communication between app processes running on different hosts transport.
Transport Layer 3-1 Transport services and protocols  provide logical communication between app processes running on different hosts  transport protocols.
Chapter 3 outline 3.1 transport-layer services
Transport Layer 3-1 outline r TCP m segment structure m reliable data transfer m flow control m congestion control.
Transport Layer 3-1 Fast Retransmit r time-out period often relatively long: m long delay before resending lost packet r detect lost segments via duplicate.
Computer Communication Digital Communication in the Modern World Transport Layer Multiplexing, UDP
Chapter 3: Transport Layer
EEC-484/584 Computer Networks Lecture 12 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 Outline r TCP m Congestion control m Flow control.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
Transport Layer3-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
Lecture 8 Chapter 3 Transport Layer
Chapter 3: Transport Layer
Announcement Project 2 out –Much harder than project 1, start early! Homework 2 due next Tu.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Electronic Mail: SMTP, POP3, IMAP DNS Socket programming with TCP.
3-1 Transport services and protocols r provide logical communication between app processes running on different hosts r transport protocols run in end.
8-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer m flow.
EEC-484/584 Computer Networks Lecture 6 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer Transport Layer. Transport Layer 3-2 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet,
IP-UDP-RTP Computer Networking (In Chap 3, 4, 7) 건국대학교 인터넷미디어공학부 임 창 훈.
Review: –What is AS? –What is the routing algorithm in BGP? –How does it work? –Where is “policy” reflected in BGP (policy based routing)? –Give examples.
CECS 474 Computer Network Interoperability Notes for Douglas E. Comer, Computer Networks and Internets (5 th Edition) Tracy Bradley Maples, Ph.D. Computer.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
2: Application Layer 1 1DT057 Distributed Information System Chapter 3 Transport Layer.
Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 12 Omar Meqdadi Department of Computer Science and Software Engineering University.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Network LayerII-1 RSC Part III: Transport Layer 1. Basic Concepts Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All.
TCOM 509 – Internet Protocols (TCP/IP) Lecture 04_b Transport Protocols - TCP Instructor: Dr. Li-Chuan Chen Date: 09/22/2003 Based in part upon slides.
Transport Layer and UDP Tahir Azim Ref:
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Part.
Chapter 3 Transport Layer
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer1 Ram Dantu (compiled from various text books)
1 Transport Layer Lecture 7 Imran Ahmed University of Management & Technology.
Lecture91 Administrative Things r Return homework # 1 r Review some problems in homework # 1 r Questions about grading? Yona r WebCT for CSE245 is working!
CSE679: Computer Network Review r Review of the uncounted quiz r Computer network review.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer Goals: Overview:
Transport Layer 3-1 Chapter 3 Outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP.
Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
2: Application Layer 1 1DT057 Distributed Information System Chapter 3 Transport Layer.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Adapted from: Computer Networking, Kurose/Ross 1DT066 Distributed Information Systems Chapter 3 Transport Layer.
Transport Layer 3-1 Internet Transport Layer Lecture 8 Dr. Najla Al-Nabhan.
Prof. Younghee Lee 1 1 Computer Networks u Lecture 5: Transport services and protocols Prof. Younghee Lee * Some part of this teaching materials are prepared.
MULTIPLEXING/DEMULTIPLEXING, CONNECTIONLESS TRANSPORT.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Quiz #1. Transport Layer 3-2 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 3: Transport.
Transport Layer3-1 Transport Layer If you are going through Hell Keep going.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer1 Goals: r understand principles behind transport layer services and protocols: m UDP m TCP Overview: r transport layer services r multiplexing/demultiplexing.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Introduction 1-1 source application transport network link physical HtHt HnHn M segment HtHt datagram destination application transport network link physical.
CSEN 404 Transport Layer II Amr El Mougy Lamia AlBadrawy.
2: Transport Layer 11 Transport Layer 1. 2: Transport Layer 12 Part 2: Transport Layer Chapter goals: r understand principles behind transport layer services:
CSEN 404 Transport Layer I Amr El Mougy Lamia Al Badrawy.
Chapter 3 outline 3.1 Transport-layer services
Introduction to Networks
Transport Layer Our goals:
Presentation transcript:

2: Application Layer 1 1DT066 Distributed Information System Chapter 3 Transport Layer

C HAPTER 3: T RANSPORT L AYER Transport Layer 3-2 Our goals: understand principles behind transport layer services: reliable data transfer flow control congestion control learn about transport layer protocols in the Internet: UDP: connectionless transport TCP: connection-oriented transport

T RANSPORT VS. NETWORK LAYER Transport Layer 3-3 network layer: logical communication between hosts transport layer: logical communication between processes relies on and enhances network layer services

I NTERNET TRANSPORT - LAYER PROTOCOLS Transport Layer 3-4 reliable, in-order delivery (TCP) congestion control flow control connection setup unreliable, unordered delivery: UDP no-frills extension of “best- effort” IP services not available: delay guarantees bandwidth guarantees application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical logical end-end transport

TCP VS. UDP FeaturesTCP (Yes/No)UDP (Yes/No) (1) Ordered packets (2) Connectionless (3) Reliable data delivery (no packet loss) (4) Flow control (5) Congestion control (6) delay guarantees (7) bandwidth guarantees

TCP VS. UDP FeaturesTCP (Yes/No)UDP (Yes/No) (1) Ordered packetsYN (2) ConnectionlessNY (3) Reliable data delivery (no packet loss) YN (4) Flow controlYN (5) Congestion controlYN (6) delay guarantees NN (7) bandwidth guarantees NN

C HAPTER 3 OUTLINE Transport Layer Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control congestion control

UDP: USER DATAGRAM PROTOCOL [RFC 768] Transport Layer 3-8 “no frills,” “bare bones” Internet transport protocol “best effort” service, UDP segments may be: lost delivered out of order to app connectionless: no handshaking between UDP sender, receiver each UDP segment handled independently of others Why is there a UDP? no connection establishment (which can add delay) simple: no connection state at sender, receiver small segment header no congestion control: UDP can blast away as fast as desired

UDP: MORE Transport Layer 3-9 often used for streaming multimedia apps loss tolerant rate sensitive other UDP uses DNS SNMP reliable transfer over UDP: add reliability at application layer application-specific error recovery! source port #dest port # 32 bits Application data (message) UDP segment format length checksum Length, in bytes of UDP segment, including header

C HAPTER 3 OUTLINE Transport Layer Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control congestion control

PRINCIPLES OF RELIABLE DATA TRANSFER Transport Layer important in app., transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

PRINCIPLES OF RELIABLE DATA TRANSFER Transport Layer important in app., transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

PRINCIPLES OF RELIABLE DATA TRANSFER Transport Layer important in app., transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

RDT3.0 EXAMPLE Transport Layer

RDT3.0 EXAMPLE Transport Layer

RDT 3.0: STOP - AND - WAIT OPERATION Transport Layer first packet bit transmitted, t = 0 senderreceiver RTT last packet bit transmitted, t = L / R first packet bit arrives last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R

PIPELINED PROTOCOLS Transport Layer Pipelining: sender allows multiple, “in-flight”, yet-to- be-acknowledged pkts range of sequence numbers must be increased buffering at sender and/or receiver Two generic forms of pipelined protocols: go-Back-N, selective repeat

P IPELINING : INCREASED UTILIZATION 3-18 Transport Layer first packet bit transmitted, t = 0 senderreceiver RTT last bit transmitted, t = L / R first packet bit arrives last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R last bit of 2 nd packet arrives, send ACK last bit of 3 rd packet arrives, send ACK Increase utilization by a factor of 3!

P IPELINING P ROTOCOLS Transport Layer Go-back-N: overview sender: up to N unACKed pkts in pipeline receiver: only sends cumulative ACKs doesn’t ACK pkt if there’s a gap sender: has timer for oldest unACKed pkt if timer expires: retransmit all unACKed packets Selective Repeat: overview sender: up to N unACKed packets in pipeline receiver: ACKs individual pkts sender: maintains timer for each unACKed pkt if timer expires: retransmit only unACKed packet

G O -B ACK -N Transport Layer Sender: k-bit seq # in pkt header “window” of up to N, consecutive unACKed pkts allowed r ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK” m may receive duplicate ACKs (see receiver) r timer for each in-flight pkt r timeout(n): retransmit pkt n and all higher seq # pkts in window

GBN IN ACTION Transport Layer

SELECTIVE REPEAT Transport Layer receiver individually acknowledges all correctly received pkts buffers pkts, as needed, for eventual in-order delivery to upper layer sender only resends pkts for which ACK not received sender timer for each unACKed pkt sender window N consecutive seq #’s again limits seq #s of sent, unACKed pkts

SELECTIVE REPEAT: SENDER, RECEIVER WINDOWS Transport Layer

C HAPTER 3 OUTLINE Transport Layer Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control Congestion control

TCP: OVERVIEW RFCS: 793, 1122, 1323, 2018, 2581 Transport Layer full duplex data: connection-oriented: flow controlled: point-to-point: reliable, in-order byte steam: pipelined: send & receive buffers

TCP SEQ. #’S AND ACKS Transport Layer Seq. #’s: byte stream “number” of first byte in segment’s data ACKs: seq # of next byte expected from other side cumulative ACK Host A Host B Seq=42, ACK=79, data = ‘C’ Seq=79, ACK=43, data = ‘C’ Seq=43, ACK=80 User types ‘C’ host ACKs receipt of echoed ‘C’ host ACKs receipt of ‘C’, echoes back ‘C’ time simple telnet scenario

TCP RELIABLE DATA TRANSFER Transport Layer TCP creates rdt service on top of IP’s unreliable service pipelined segments cumulative ACKs TCP uses single retransmission timer retransmissions are triggered by: timeout events duplicate ACKs

TCP: RETRANSMISSION SCENARIOS Transport Layer Host A Seq=100, 20 bytes data ACK=100 time premature timeout Host B Seq=92, 8 bytes data ACK=120 Seq=92, 8 bytes data Seq=92 timeout ACK=120 Host A Seq=92, 8 bytes data ACK=100 loss timeout lost ACK scenario Host B X Seq=92, 8 bytes data ACK=100 time Seq=92 timeout SendBase = 100 SendBase = 120 SendBase = 120 Sendbase = 100

TCP RETRANSMISSION SCENARIOS (MORE) Transport Layer Host A Seq=92, 8 bytes data ACK=100 loss timeout Cumulative ACK scenario Host B X Seq=100, 20 bytes data ACK=120 time SendBase = 120

TCP F LOW C ONTROL Transport Layer receive side of TCP connection has a receive buffer: speed-matching service: matching send rate to receiving application’s drain rate r app process may be slow at reading from buffer sender won’t overflow receiver’s buffer by transmitting too much, too fast flow control IP datagrams TCP data (in buffer) (currently) unused buffer space application process

TCP CONGESTION CONTROL: Transport Layer r goal: TCP sender should transmit as fast as possible, but without congesting network m Q: how to find rate just below congestion level r decentralized: each TCP sender sets its own rate, based on implicit feedback: m ACK: segment received (a good thing!), network not congested, so increase sending rate m lost segment: assume loss due to congested network, so decrease sending rate

TCP CONGESTION CONTROL : BANDWIDTH PROBING Transport Layer r “probing for bandwidth”: increase transmission rate on receipt of ACK, until eventually loss occurs, then decrease transmission rate m continue to increase on ACK, decrease on loss (since available bandwidth is changing, depending on other connections in network) ACKs being received, so increase rate X X X X X loss, so decrease rate sending rate time TCP’s “sawtooth” behavior

C HAPTER 3: S UMMARY Transport Layer principles behind transport layer services: reliable data transfer flow control congestion control instantiation and implementation in the Internet UDP TCP Next: leaving the network “edge” (application, transport layers) into the network “core”

GBN D EMO Transport Layer

S ELECTIVE R EPEAT D EMO Transport Layer SR/SRindex.html