Lecture Slides Elementary Statistics Twelfth Edition

Slides:



Advertisements
Similar presentations
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Section 7-2 Estimating a Population Proportion Created by Erin.
Advertisements

Sections 7-1 and 7-2 Review and Preview and Estimating a Population Proportion.
Confidence Intervals This chapter presents the beginning of inferential statistics. We introduce methods for estimating values of these important population.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.3 Estimating a Population mean µ (σ known) Objective Find the confidence.
Math 161 Spring 2008 What Is a Confidence Interval?
Lecture Slides Elementary Statistics Twelfth Edition
7-2 Estimating a Population Proportion
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Lecture Slides Elementary Statistics Twelfth Edition
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7.2 Estimating a Population Proportion Objective Find the confidence.
Confidence Interval A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Chapter 7 Confidence Intervals and Sample Sizes
Copyright © 2010, 2007, 2004 Pearson Education, Inc Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Lecture Slides Elementary Statistics Twelfth Edition
Slide 1 Copyright © 2004 Pearson Education, Inc..
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 7 Estimates and Sample Sizes 7-1 Review and Preview 7-2 Estimating.
Copyright © 2010, 2007, 2004 Pearson Education, Inc Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Sections 6-1 and 6-2 Overview Estimating a Population Proportion.
1 Chapter 6. Section 6-1 and 6-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Lecture Slides Elementary Statistics Eleventh Edition
Population All members of a set which have a given characteristic. Population Data Data associated with a certain population. Population Parameter A measure.
Chapter 7 Estimates and Sample Sizes
Estimating a Population Proportion
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Chapter 7 Estimates and Sample Sizes
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Estimating the Value of a Parameter Using Confidence Intervals
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 7 Estimates and Sample Sizes 7-1 Review and Preview 7-2 Estimating a Population Proportion.
Estimating a Population Proportion
Copyright © 2010, 2007, 2004 Pearson Education, Inc. 7-1 Review and Preview 7-2 Estimating a Population Proportion 7-3 Estimating a Population.
1 Chapter 6 Estimates and Sample Sizes 6-1 Estimating a Population Mean: Large Samples / σ Known 6-2 Estimating a Population Mean: Small Samples / σ Unknown.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Sections 7-1 and 7-2 Review and Preview and Estimating a Population Proportion.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides 11 th Edition Chapter 7.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7-1 Review and Preview.
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Section 6.1 Confidence Intervals for the Mean (  Known)
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Overview.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
1 Chapter 6. Section 6-1 and 6-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 1 Estimates and Sample Sizes Chapter 6 M A R I O F. T R I O L A Copyright © 1998,
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Example: In a recent poll, 70% of 1501 randomly selected adults said they believed.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
Chapters 6 & 7 Overview Created by Erin Hodgess, Houston, Texas.
Chapter 7 Estimates and Sample Sizes 7-1 Overview 7-2 Estimating a Population Proportion 7-3 Estimating a Population Mean: σ Known 7-4 Estimating a Population.
SECTION 7.2 Estimating a Population Proportion. Practice  Pg  #6-8 (Finding Critical Values)  #9-11 (Expressing/Interpreting CI)  #17-20.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Example: In a recent poll, 70% of 1501 randomly selected adults said they believed.
SECTION 7.2 Estimating a Population Proportion. Where Have We Been?  In Chapters 2 and 3 we used “descriptive statistics”.  We summarized data using.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Chapter Confidence Intervals 6.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Copyright © 2004 Pearson Education, Inc.
Elementary Statistics
Elementary Statistics
Lecture Slides Elementary Statistics Eleventh Edition
Elementary Statistics: Picturing The World
Lecture Slides Elementary Statistics Tenth Edition
Chapter 7 Estimates and Sample Sizes
Lecture Slides Elementary Statistics Twelfth Edition
Estimating a Population Mean:  Known
Presentation transcript:

Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola

Chapter 7 Estimates and Sample Sizes Chapter 7 Review

Definition A point estimate is a single value (or point) used to approximate a population parameter. is the point estimate for a proportion. is the point estimate for a mean. s is the point estimate for a standard deviation.

Definition A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population parameter. A confidence interval is sometimes abbreviated as CI.

Definition Most common choices are 90%, 95%, or 99%. A confidence level is the probability 1 – α (often expressed as the equivalent percentage value) that the confidence interval actually does contain the population parameter, assuming that the estimation process is repeated a large number of times. (The confidence level is also called degree of confidence, or the confidence coefficient.) Most common choices are 90%, 95%, or 99%. (α = 0.10), (α = 0.05), (α = 0.01)

Interpreting a Confidence Interval We must be careful to interpret confidence intervals correctly. There is a correct interpretation and many different and creative incorrect interpretations of the confidence interval 0.828 < p < 0.872. “We are 95% confident that the interval from 0.828 to 0.872 actually does contain the true value of the population proportion p.” This means that if we were to select many different samples of size 1007 and construct the corresponding confidence intervals, 95% of them would actually contain the value of the population proportion p. (Note that in this correct interpretation, the level of 95% refers to the success rate of the process being used to estimate the proportion.)

Caution Know the correct interpretation of a confidence interval. Confidence intervals can be used informally to compare different data sets, but the overlapping of confidence intervals should not be used for making formal and final conclusions about equality of proportions.

Using Confidence Intervals for Hypothesis Tests A confidence interval can be used to test some claim made about a population proportion p. For now, we do not yet use a formal method of hypothesis testing, so we simply generate a confidence interval and make an informal judgment based on the result.

Critical Values A standard score (z, t, or X2) or a can be used to distinguish between sample statistics that are likely to occur and those that are unlikely to occur. Such a score is called a critical value.

Critical Values 3. The critical value separating the right-tail region is commonly denoted by zα/2, tα/2, X2R, X2L and is referred to as a critical value because it is on the borderline separating z scores from sample proportions that are likely to occur from those that are unlikely to occur.

Definition A critical value is the number on the borderline separating sample statistics that are likely to occur from those that are unlikely to occur.

Finding zα/2 for a 95% Confidence Level Critical Values

Definition When data from a simple random sample are used to estimate a population proportion p, the margin of error, denoted by E, is the maximum likely difference (with probability 1 – α, such as 0.95) between the observed value and the true value of the population parameter .

Confidence Intervals:

Example Listed below are the ages (years) of randomly selected race car drivers (based on data reported un USA Today. Construct a 98% confidence interval estimate of the mean age of all race car drivers. 32 33 33 41 29 38 32 33 23 27 45 52 29 25 Write a correct interpretation of the confidence interval.

Example A Consumer Reports Research Center survey of 427 women showed that 29.0% of them purchase books online. Find a 95% confidence interval of the percentage of all women who purchase books online. Can we safely conclude that less than 50% of all women purchase books online? Can we safely conclude that at least 25% of all women purchase books online?

Example The Chapter problem for Chapter 3 includes the numbers of chocolate chip cookies in a sample of 40 Chips Ahoy regular cookies. The mean is 23.95 and the standard deviation is 2.55. Construct a 98% confidence interval of the standard deviation of the numbers of chocolate chips in all such cookies.

Caution Never follow the common misconception that poll results are unreliable if the sample size is a small percentage of the population size. The population size is usually not a factor in determining the reliability of a poll.

Sample Size Suppose we want to collect sample data in order to estimate some population proportion. The question is how many sample items must be obtained? Solve Error formulas for n, using algebra.

Determining Sample Size

Round-Off Rule for Determining Sample Size If the computed sample size n is not a whole number, round the value of n up to the next larger whole number.

Example Many companies are interested in knowing the percentage of adults who buy clothing online. How many adults must be surveyed in order to be 95% confident that the sample percentage is in error by no more than three percentage points? a. Use a recent result from the Census Bureau: 66% of adults buy clothing online. b. Assume that we have no prior information suggesting a possible value of the proportion.