©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Displaying and Exploring Data Chapter 4.

Slides:



Advertisements
Similar presentations
BUS 220: ELEMENTARY STATISTICS
Advertisements

Describing Data: Percentiles
Random Sampling and Data Description
Measures of Dispersion
1 Chapter 1: Sampling and Descriptive Statistics.
Chapter 2 McGraw-Hill/Irwin
+ Chapter 1 Section 2 By Abby Chopoorian and Morgan Smith.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Displaying and Exploring Data Chapter 4.
ISE 261 PROBABILISTIC SYSTEMS. Chapter One Descriptive Statistics.
Slides by JOHN LOUCKS St. Edward’s University.
B a c kn e x t h o m e Classification of Variables Discrete Numerical Variable A variable that produces a response that comes from a counting process.
Describing Data: Displaying and Exploring Data Chapter 04 McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.
Descriptive Statistics  Summarizing, Simplifying  Useful for comprehending data, and thus making meaningful interpretations, particularly in medium to.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Numerical Measures Chapter 3.
Describing Data: Displaying and Exploring Data Chapter 4 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Describing Data: Displaying and Exploring Data
Descriptive Statistics  Summarizing, Simplifying  Useful for comprehending data, and thus making meaningful interpretations, particularly in medium to.
Describing Data: Displaying and Exploring Data Chapter 04 McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved.
Let’s Review for… AP Statistics!!! Chapter 1 Review Frank Cerros Xinlei Du Claire Dubois Ryan Hoshi.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Frequency Tables, Frequency Distributions, and Graphic Presentation Chapter 2.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 2 Describing Data: Frequency Tables, Frequency Distributions,
Descriptive Statistics: Tabular and Graphical Methods
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Frequency Tables, Frequency Distributions, and Graphic Presentation Chapter 3.
Chapter 3: Central Tendency. Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Displaying and Exploring Data Unit 1: One Variable Statistics CCSS: N-Q (1-3);
Describing Data: Displaying and Exploring Data Chapter 4 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Introduction and Descriptive Statistics
Variable  An item of data  Examples: –gender –test scores –weight  Value varies from one observation to another.
STATISTICS I COURSE INSTRUCTOR: TEHSEEN IMRAAN. CHAPTER 4 DESCRIBING DATA.
1 Laugh, and the world laughs with you. Weep and you weep alone.~Shakespeare~
Describing Data: Displaying and Exploring Data. 4-2 GOALS 1. Develop and interpret a dot plot. 2. Construct and interpret box plots. 3. Compute and understand.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Describing Data: Displaying and Exploring Data Chapter 4.
Chapter 2 Describing Data.
Biostatistics Class 1 1/25/2000 Introduction Descriptive Statistics.
1 Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 3 Graphical Methods for Describing Data.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 2 Descriptive Statistics: Tabular and Graphical Methods.
4-1 Chapter Four McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
4-1 Chapter Four McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
1 1.Develop and interpret a stem-and-leaf display 2.Develop and interpret a: 1.Dot plot 3.Develop and interpret quartiles, deciles, and percentiles 4.Develop.
BUSINESS STATISTICS I Descriptive Statistics & Data Collection.
Chapter 2 Describing Data: Frequency Tables, Frequency Distributions, and Graphic Presentation McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies,
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Numerical Measures Chapter 3.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Displaying and Exploring Data Chapter 4.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Describing Data: Displaying and Exploring Data Chapter 4.
Describing Data: Displaying and Exploring Data
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Frequency Tables, Frequency Distributions, and Graphic Presentation Chapter 2.
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall2(2)-1 Chapter 2: Displaying and Summarizing Data Part 2: Descriptive Statistics.
Describing Data: Numerical Measures Chapter 3 McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 2 Descriptive Statistics: Tabular and Graphical Methods.
MATH 2311 Section 1.5. Graphs and Describing Distributions Lets start with an example: Height measurements for a group of people were taken. The results.
Displaying & Exploring Data Ir.Muhril Ardiansyah,M.Sc.,Ph.D.1 Chapter 4. Describing Data: Displaying And Exploring Data
Day 2. GOALS 1.Calculate the arithmetic mean, weighted mean, median, mode, and geometric mean. 2.Explain the characteristics, uses, advantages, and disadvantages.
Describing Data: Displaying and Exploring Data Chapter 4 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Numerical Measures Chapter 3.
Describing Data: Frequency Tables, Frequency Distributions, and Graphic Presentation Chapter 2 Copyright © 2011 by the McGraw-Hill Companies, Inc. All.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Displaying and Exploring Data Chapter 4.
2-1 Ms. Kathryn Ball of AutoUSA wants to develop tables, charts, and graphs to show the typical selling price on various dealer lots. The table on the.
Pertemuan - 2 Penyajian Data.
Describing Data: Displaying and Exploring Data
Describing Data: Displaying and Exploring Data
Describing Data: Displaying and Exploring Data
Describing Data: Displaying and Exploring Data
Describing Data: Displaying and Exploring Data
Describing Data: Displaying and Exploring Data
Describing Data: Displaying and Exploring Data
Describing Data: Displaying and Exploring Data
Describing Data: Displaying and Exploring Data
Describing Data: Displaying and Exploring Data
Describing Data: Displaying and Exploring Data
Presentation transcript:

©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin Describing Data: Displaying and Exploring Data Chapter 4

2 GOALS Develop and interpret a dot plot. Develop and interpret a stem-and-leaf display. Compute and understand quartiles, deciles, and percentiles. Construct and interpret box plots. Compute and understand the coefficient of skewness. Draw and interpret a scatter diagram. Construct and interpret a contingency table.

3 Dot Plots A dot plot groups the data as little as possible and the identity of an individual observation is not lost. To develop a dot plot, each observation is simply displayed as a dot along a horizontal number line indicating the possible values of the data. If there are identical observations or the observations are too close to be shown individually, the dots are “piled” on top of each other.

4 Dot Plots - Examples Reported below are the number of vehicles sold in the last 24 months at Smith Ford Mercury Jeep, Inc., in Kane, Pennsylvania, and Brophy Honda Volkswagen in Greenville, Ohio. Construct dot plots and report summary statistics for the two small-town Auto USA lots.

5 Dot Plot – Minitab Example

6 Stem-and-Leaf In Chapter 2, we showed how to organize data into a frequency distribution. The major advantage to organizing the data into a frequency distribution is that we get a quick visual picture of the shape of the distribution. One technique that is used to display quantitative information in a condensed form is the stem-and-leaf display. Stem-and-leaf display is a statistical technique to present a set of data. Each numerical value is divided into two parts. The leading digit(s) becomes the stem and the trailing digit the leaf. The stems are located along the vertical axis, and the leaf values are stacked against each other along the horizontal axis. Advantage of the stem-and-leaf display over a frequency distribution - the identity of each observation is not lost.

7 Stem-and-Leaf – Example Suppose the seven observations in the 90 up to 100 class are: 96, 94, 93, 94, 95, 96, and 97. The stem value is the leading digit or digits, in this case 9. The leaves are the trailing digits. The stem is placed to the left of a vertical line and the leaf values to the right. The values in the 90 up to 100 class would appear as Then, we sort the values within each stem from smallest to largest. Thus, the second row of the stem- and-leaf display would appear as follows:

8 Stem-and-leaf: Another Example Listed in Table 4–1 is the number of 30-second radio advertising spots purchased by each of the 45 members of the Greater Buffalo Automobile Dealers Association last year. Organize the data into a stem-and-leaf display. Around what values do the number of advertising spots tend to cluster? What is the fewest number of spots purchased by a dealer? The largest number purchased?

9 Stem-and-leaf: Another Example

10 Stem-and-leaf: Another Example (Minitab)

11 The standard deviation is the most widely used measure of dispersion. Alternative ways of describing spread of data include determining the location of values that divide a set of observations into equal parts. These measures include quartiles, deciles, and percentiles. Quartiles, Deciles and Percentiles

12 To formalize the computational procedure, let L p refer to the location of a desired percentile. So if we wanted to find the 33rd percentile we would use L 33 and if we wanted the median, the 50th percentile, then L 50. The number of observations is n, so if we want to locate the median, its position is at (n + 1)/2, or we could write this as (n + 1)(P/100), where P is the desired percentile. Percentile Computation

13 Percentiles - Example Listed below are the commissions earned last month by a sample of 15 brokers at Salomon Smith Barney’s Oakland, California, office. Salomon Smith Barney is an investment company with offices located throughout the United States. $2,038 $1,758 $1,721 $1,637 $2,097 $2,047 $2,205 $1,787 $2,287 $1,940 $2,311 $2,054 $2,406 $1,471 $1,460 Locate the median, the first quartile, and the third quartile for the commissions earned.

14 Percentiles – Example (cont.) Step 1: Organize the data from lowest to largest value $1,460 $1,471 $1,637 $1,721 $1,758 $1,787 $1,940 $2,038 $2,047 $2,054 $2,097 $2,205 $2,287 $2,311 $2,406

15 Percentiles – Example (cont.) Step 2: Compute the first and third quartiles. Locate L 25 and L 75 using:

16 Percentiles – Example (Minitab)

17 Percentiles – Example (Excel)

18 Boxplot - Example

19 Boxplot Example

20 Boxplot – Using Minitab Refer to the Whitner Autoplex data in Table 2–4. Develop a box plot of the data. What can we conclude about the distribution of the vehicle selling prices?

21 Skewness In Chapter 3, measures of central location for a set of observations (the mean, median, and mode) and measures of data dispersion (e.g. range and the standard deviation) were introduced Another characteristic of a set of data is the shape. There are four shapes commonly observed: – symmetric, – positively skewed, – negatively skewed, – bimodal.

22 Skewness - Formulas for Computing The coefficient of skewness can range from -3 up to 3. – A value near -3, such as -2.57, indicates considerable negative skewness. – A value such as 1.63 indicates moderate positive skewness. – A value of 0, which will occur when the mean and median are equal, indicates the distribution is symmetrical and that there is no skewness present.

23 Commonly Observed Shapes

24 Skewness – An Example Following are the earnings per share for a sample of 15 software companies for the year The earnings per share are arranged from smallest to largest. Compute the mean, median, and standard deviation. Find the coefficient of skewness using Pearson’s estimate. What is your conclusion regarding the shape of the distribution?

25 Skewness – An Example Using Pearson’s Coefficient

26 Skewness – A Minitab Example

27 Describing Relationship between Two Variables One graphical technique we use to show the relationship between variables is called a scatter diagram. To draw a scatter diagram we need two variables. We scale one variable along the horizontal axis (X-axis) of a graph and the other variable along the vertical axis (Y- axis).

28 Describing Relationship between Two Variables – Scatter Diagram Examples

29 In the Introduction to Chapter 2 we presented data from AutoUSA. In this case the information concerned the prices of 80 vehicles sold last month at the Whitner Autoplex lot in Raytown, Missouri. The data shown include the selling price of the vehicle as well as the age of the purchaser. Is there a relationship between the selling price of a vehicle and the age of the purchaser? Would it be reasonable to conclude that the more expensive vehicles are purchased by older buyers? Describing Relationship between Two Variables – Scatter Diagram Excel Example

30 Describing Relationship between Two Variables – Scatter Diagram Excel Example

31 Contingency Tables A scatter diagram requires that both of the variables be at least interval scale. What if we wish to study the relationship between two variables when one or both are nominal or ordinal scale? In this case we tally the results in a contingency table.

32 Contingency Tables – An Example A manufacturer of preassembled windows produced 50 windows yesterday. This morning the quality assurance inspector reviewed each window for all quality aspects. Each was classified as acceptable or unacceptable and by the shift on which it was produced. Thus we reported two variables on a single item. The two variables are shift and quality. The results are reported in the following table.

33 End of Chapter 4