Colligative Properties

Slides:



Advertisements
Similar presentations
CALCULATIONS INVOLVING COLLIGATIVE PROPERTIES
Advertisements

Colligative Properties of Nonelectrolytes. Colligative Properties Changes in colligative properties depend only on the number of solute particles present,
Solutions and Colligative Properties
Chapter 13 Preview Lesson Starter Objectives Dissociation Ionization
Physical Properties of Solutions Chapter 12 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Colligative Properties. How does the solute change the properties of the solvent? Consider aqueous solutions. Solvent = water. How do the properties of.
Calculations Involving Colligative Properties Review Molarity (M) = moles of solute liter of solution Dilutions: M 1 x V 1 = M 2 x V 2 Percent by volume.
Physical Properties of Solutions
Physical Properties of Solutions
Colligative Properties The presence of a solute affects the properties of the solvent. –Example: Freezing point of water Colligative properties depend.
Chapter 13 – Solutions - part II Colligative Properties
Colligative Properties of Solutions Colligative properties = physical properties of solutions that depend on the # of particles dissolved, not the kind.
Properties of Solutions Chapter 18 Lesson 3. Solution Composition Mass percentage (weight percentage): mass percentage of the component = X 100% mass.
Section 1 Compounds in Aqueous Solution
Solution Properties 11.1 Solution Composition
Molarity  Molarity = grams / molar mass / Liters  Liters = grams / molar mass/ Molarity  Grams = Molarity x Liters x molar mass.
Colligative Properties. Properties that depend upon the concentration of solute particles are called colligative properties. Generally these properties.
13.7 Osmotic Pressure –Osmosis, osmotic pressure calculations including molar mass determination, colligative properties, practical applications (red blood.
Prentice Hall ©2004 CHAPTER 11 SOLUTIONS AND THEIR PROPERTIES Chapter 11Slide 1.
Changing Molarity to Molality
Chapter 11 Properties of Solutions. Chapter 11 Table of Contents Copyright © Cengage Learning. All rights reserved Solution Composition 11.2 The.
Chapter 12 Solutions. From Chapter 1: Classification of matter Matter Homogeneous (visibly indistinguishable) Heterogeneous (visibly distinguishable)
Change in Freezing Point Common Applications of Freezing Point Depression Propylene glycol Ethylene glycol – deadly to small animals.
1 Colligative Properties of Solutions Colligative properties are properties that depend only on the number of solute particles in solution and not on the.
Solutions.
Chapter 11 Properties of Solutions. Chapter 11 Table of Contents Copyright © Cengage Learning. All rights reserved Solution Composition 11.2 The.
Colligative Properties. _______________ – physical properties of solutions that are affected only by the number of particles NOT the identity of the solute.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Chapter Presentation Transparencies Lesson Starters Standardized.
Colligative Properties. Colligative properties Properties that depend on the TOTAL number of dissolved particles.
Boiling-Point Elevation and Freezing-Point Depression Boiling-Point Elevation (∆T b ): The boiling point of the solution (T b ) minus the boiling point.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How to Use This Presentation To View the presentation as a slideshow.
Chapter 14 Ions in Aqueous Solutions & Colligative Properties.
Modern Chemistry Chapter 13
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Solutions... the components of a mixture are uniformly intermingled (the mixture is.
Solutions. Occur in all phases u The solvent does the dissolving. u The solute is dissolved. u There are examples of all types of solvents dissolving.
Colligative Properties of Solutions
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION Chapter 11 Properties of Solutions
Ions in Aqueous Solutions and Colligative Properties.
Colligative Properties
Colligative Properties
Colligative Properties
Chapter 11 Properties of Solutions. From Chapter 1: Classification of matter Matter Homogeneous (visibly indistinguishable) Heterogeneous (visibly distinguishable)
Physical Properties of Solutions Chapter 12. Objectives 1.0 Define key terms and concepts. 1.8 Explain how a solute and solvent interact to make a solution.
POINT > Define colligative properties POINT > Describe how solutes affect the equilibrium vapor pressure of a solution POINT > Describe boiling point.
Chapter 11 Properties of Solutions. Copyright © Cengage Learning. All rights reserved 2 Solution – a homogeneous mixture. Solute – substance being dissolved.
Chapter 8 Solutions. Chapter 8 Table of Contents Copyright © Cengage Learning. All rights reserved 2 8.1Characteristics of Solutions 8.2Solubility 8.3Solution.
Physical Properties of Solutions Chapter 12 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Solutions-3 Colligative Properties. When a solute is added to a solvent, particles get in the way of crystal formation. Freezing requires lower temperature.
Chapter 11 Properties of Solutions. Section 11.1 Solution Composition Copyright © Cengage Learning. All rights reserved 2 Various Types of Solutions.
11.4 Colligative Properties
Chapter 11 Properties of Solutions. Section 11.1 Solution Composition Copyright © Cengage Learning. All rights reserved 2 Various Types of Solutions.
Properties of Solutions Chapter – Solution Composition Solutions are composed of a solute and a solvent Solute – substance which is dissolved.
LO 1.16 The student can design and/or interpret the results of an experiment regarding the absorption of light to determine the concentration of an absorbing.
Various Types of Solutions
Colligative Properties
Properties of Solutions
Chapter 11 – Properties of Solutions 11.5 – 11.8 Notes
Colligative Properties of Nonelectrolytes
Vapor Pressures of Solutions
Various Types of Solutions
Colligative Properties of Solutions
Colligative Properties of Solutions
Colligative Properties
Colligative Properties of Solutions
Various Types of Solutions
Colligative Properties of Solutions (chapter 16)
Solution Properties 11.1 Solution Composition
13.2 Colligative Properties of Solutions
M = molarity of the solution R = gas law constant
Presentation transcript:

Colligative Properties Depend only on the number, not on the identity, of the solute particles in an ideal solution: Boiling-point elevation Freezing-point depression Osmotic pressure Copyright © Cengage Learning. All rights reserved

Boiling-Point Elevation Nonvolatile solute elevates the boiling point of the solvent. ΔT = Kbmsolute ΔT = boiling-point elevation Kb = molal boiling-point elevation constant msolute = molality of solute Copyright © Cengage Learning. All rights reserved

Boiling Point Elevation: Liquid/Vapor Equilibrium To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright © Cengage Learning. All rights reserved

Boiling Point Elevation: Addition of a Solute To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright © Cengage Learning. All rights reserved

Boiling Point Elevation: Solution/Vapor Equilibrium To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright © Cengage Learning. All rights reserved

Freezing-Point Depression When a solute is dissolved in a solvent, the freezing point of the solution is lower than that of the pure solvent. ΔT = Kfmsolute ΔT = freezing-point depression Kf = molal freezing-point depression constant msolute = molality of solute Copyright © Cengage Learning. All rights reserved

Freezing Point Depression: Solid/Liquid Equilibrium To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright © Cengage Learning. All rights reserved

Freezing Point Depression: Addition of a Solute To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright © Cengage Learning. All rights reserved

Freezing Point Depression: Solid/Solution Equilibrium To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE Copyright © Cengage Learning. All rights reserved

Changes in Boiling Point and Freezing Point of Water Copyright © Cengage Learning. All rights reserved

EXERCISE! A solution was prepared by dissolving 25.00 g of glucose in 200.0 g water. The molar mass of glucose is 180.16 g/mol. What is the boiling point of the resulting solution (in °C)? Glucose is a molecular solid that is present as individual molecules in solution. The change in temperature is ΔT = Kbmsolute. Kb is 0.51 °C·kg/mol. To solve formsolute, use the equation m = moles of solute/kg of solvent. Moles of solute = (25.00 g glucose)(1 mol / 180.16 g glucose) = 0.1388 mol glucose Kg of solvent = (200.0 g)(1 kg / 1000 g) = 0.2000 kg water msolute = (0.1388 mol glucose) / (0.2000 kg water) = 0.6938 mol/kg ΔT = (0.51 °C·kg/mol)(0.6938 mol/kg) = 0.35 °C. The boiling point of the resulting solution is 100.00 °C + 0.35 °C = 100.35 °C. Note: Use the red box animation to assist in explaining how to solve the problem. Copyright © Cengage Learning. All rights reserved

EXERCISE! A plant cell has a natural concentration of 0.25 m. You immerse it in an aqueous solution with a freezing point of –0.246°C. Will the cell explode, shrivel, or do nothing? The cell will explode (or at least expand). The concentration of the solution is 0.186 m. Thus, the cell has a higher concentration, and water will enter the cell. Note: Use the red box animation to assist in explaining how to solve the problem. Copyright © Cengage Learning. All rights reserved

van’t Hoff Factor, i The relationship between the moles of solute dissolved and the moles of particles in solution is usually expressed as: Copyright © Cengage Learning. All rights reserved

Ion Pairing At a given instant a small percentage of the sodium and chloride ions are paired and thus count as a single particle. Copyright © Cengage Learning. All rights reserved

Examples The expected value for i can be determined for a salt by noting the number of ions per formula unit (assuming complete dissociation and that ion pairing does not occur). NaCl i = 2 KNO3 i = 2 Na3PO4 i = 4 Copyright © Cengage Learning. All rights reserved

Ion Pairing Ion pairing is most important in concentrated solutions. As the solution becomes more dilute, the ions are farther apart and less ion pairing occurs. Ion pairing occurs to some extent in all electrolyte solutions. Ion pairing is most important for highly charged ions. Copyright © Cengage Learning. All rights reserved

Modified Equations Copyright © Cengage Learning. All rights reserved