A CIDS AND B ASES II IB C HEMISTRY G R.12 Topic 18 1 Chem2_Dr. Dura.

Slides:



Advertisements
Similar presentations
Acid-Base Equilibria and Solubility Equilibria
Advertisements

Acids, Bases, and Salts Chapter 19.
AQUEOUS EQUILIBRIA AP Chapter 17.
Chapter 16: Aqueous Ionic Equilibria Common Ion Effect Buffer Solutions Titrations Solubility Precipitation Complex Ion Equilibria.
Updates Assignment 04 is is due today (in class) Midterms marked (in the box); solutions are posted Assignment 03 is in the box.
1 Acids and Bases. 2 Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals to produce.
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
Acids and Bases Chapter and Br Ø nstead Acids and Br Ø nstead Bases Recall from chapter 4: Recall from chapter 4: –Br Ø nstead Acid-
Acids and Bases Chapter 15
Acid-Base Equilibria and Solubility Equilibria Chapter
Chapter 17 ACID-BASE EQUILIBRIA (Part I) 1Dr. Al-Saadi.
Copyright McGraw-Hill Chapter 17 Acid-Base Equilibria and Solubility Equilibria Insert picture from First page of chapter.
CHM 112 Summer 2007 M. Prushan Acid-Base Equilibria and Solubility Equilibria Chapter 16.
Acid-Base Titrations.
Acids and Bases Chapter 15. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals.
Topic 18- Acids and bases 18.1 Calculations involving acids and bases 18.2 Buffer solutions 18.3 Salt hydrolysis 18.4 Acid-base titrations 18.5 Indicators.
Acids and Bases Chapter 8. Polyprotic acids However, the most ionization occurs in the first step.  K a1 >> K a2 > K a3.... Consequently, the [H + ]
Chapter 19 More about ACID-BASES. Self-Ionization of Water Two water molecules produce a hydronium ion & a hydroxide ion by the transfer of a proton.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
HNO 3, HCl, HBr, HI, H 2 SO 4 and HClO 4 are the strong acids. Strong and Weak Acids/Bases The strength of an acid (or base) is determined by the amount.
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Updates Assignment 06 is due Mon., March 12 (in class) Midterm 2 is Thurs., March 15 and will cover Chapters 16 & 17 –Huggins 10, 7-8pm –For conflicts:
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
Aqueous Equilibria Chapter 17 HW problems: 3, 5, 14, 15, 16, 23, 24, 27a, 28a, 31, 37, 43, 45, 51, 57.
Aqueous Equilibria. The __________________________ is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved.
Acid-Base and Solubility Equilibria Common-ion effect Buffer solutions Acid-base titration Solubility equilibria Complex ion formation Qualitative analysis.
Acid-Base Equilibria Chapter 16. The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Dr. Ali Bumajdad.
(equimolar amounts of acid and base have reacted)
Chapter 15 Applications of Aqueous Equilibria Addition of base: Normal human blood pH is 7.4 and has a narrow range of about +/- 0.2.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Weak Acids & Weak Bases. Review Try the next two questions to see what you remember Try the next two questions to see what you remember.
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid/Base Chemistry Part II CHEM 2124 – General Chemistry II Alfred State College Professor Bensley.
Strong base neutralizes weak acid Strong acid neutralizes weak base.
Acid-Base Equilibria Chapter 16. The __________________is the shift in equilibrium caused by the addition of a compound having an __________in common.
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CHM 112 Summer 2007 M. Prushan Chapter 15 Aqueous Equilibrium – Acids and Bases.
Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acids and Bases Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 15 Acids and Bases. Some Properties of Acids þ Produce H + (_______) ions in water (the ________ ion is a hydrogen ion attached to a water molecule)
Acid-Base Equilibria and Solubility Equilibria Chapter 17 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Acids and Bases Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with one of the products.
Acid Reactions I Acids & Active Metals: Single replacement reactions Active metals (K, Na, Ca, Mg, Al, Zn, Fe, Sn) Produce H 2 Oxidation-reduction reactions.
University Chemistry Chapter 12: Acid-Base Equilibria and Solubility Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or.
HL Acids and Bases. Strength of Acids/Bases Strong Acids (100% ionized or dissociated) – HCl – HBr – HI – HNO 3 – H 2 SO 4 – HClO 4 – HClO 3 Strong bases.
Titrations In a titration a solution of accurately known concentration (titrant) is added gradually added to another solution of unknown concentration.
University Chemistry Chapter 11: Acids and Bases Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
NH4+ (aq) H+ (aq) + NH3 (aq)
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Copyright © Cengage Learning. All rights reserved
Buffers Titrations and the Henderson Hasselbach Equation
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Acid-Base Equilibria and Solubility Equilibria
Presentation transcript:

A CIDS AND B ASES II IB C HEMISTRY G R.12 Topic 18 1 Chem2_Dr. Dura

T OPICS  18.1 Calculations Involving Acids and Bases  18.2 Buffer Solutions  18.3 Salt Hydrolysis  18.4 Acid-Base Titrations  18.5 Indicators 2 Chem2_Dr. Dura

IB S TANDARDS  State the expression for the ionic product constant of water (K w ).  Deduce [H + (aq)] and [OH - (aq)], for water at different temperatures given K w values.  Solve problems involving [H + (aq)], [OH - (aq)], pH and pOH.  State the equation for the reaction for any weak acid or weak base with water, and hence deduce the expressions for K a and K b. Chem 2_Dr. Dura 3

IB S TANDARDS Solve problems involving solutions of weak acids and bases using the expressions: K a x K b = K w pK a + pK b = pK w pH + pOH = pK w Identify the relative strengths of acids and bases using values of K a, K b, pK a and pK b. 4 Chem2_Dr. Dura

5 H 2 O (l) H + (aq) + OH - (aq) The Ion Product of Water K c = [H + ][OH - ] [H 2 O] [H 2 O] = constant K c [H 2 O] = K w = [H + ][OH - ] The ion-product constant (K w ) is the product of the molar concentrations of H + and OH - ions at a particular temperature. At 25 0 C K w = [H + ][OH - ] = 1.0 x [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution Is neutral acidic basic

K W IS TEMPERATURE DEPENDENT Temp o CKwKw [H+] in pure water pH 01.5 x x x x x x Chem2_Dr. Dura

7 pH = - log [H+], [H + ] = 10 -pH pOH = -log [OH-], [OH - ] = 10 -pOH [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution is neutral acidic basic [H + ] = 1 x [H + ] > 1 x [H + ] < 1 x pH = 7 pH < 7 pH > 7 At 25 0 C pH[H + ]

Chem2_Dr. Dura 8 [H + ][OH - ] = K w = 1.0 x log [H + ] – log [OH - ] = pH + pOH = At 25 0 C

Chem2_Dr. Dura 9 Example 1: The pH of rainwater collected in a certain region of the northeastern United States on a particular day was What is the H + ion concentration of the rainwater? pH = - log [H + ] [H + ] = 10 -pH = = 1.5 x M Example 2: The OH - ion concentration of a blood sample is 2.5 x M. What is the pH of the blood? pH + pOH = pOH = -log [OH - ]= -log (2.5 x )= 6.60 pH = – pOH = – 6.60 = 7.40

Chem2_Dr. Dura 10 HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) Weak Acids (HA) and Acid Ionization Constants HA (aq) H + (aq) + A - (aq) K a = [H + ][A - ] [HA] K a is the acid ionization constant KaKa weak acid strength

Chem2_Dr. Dura 11 NH 3 (aq) + H 2 O (l) NH 4 + (aq) + OH - (aq) Weak Bases and Base Ionization Constants K b = [NH 4 + ][OH - ] [NH 3 ] K b is the base ionization constant KbKb weak base strength Solve weak base problems like weak acids except solve for [OH-] instead of [H + ].

I ONIZATION C ONSTANTS OF C ONJUGATE A CID - B ASE P AIRS  Consider a weak acid (HA) and its conjugate base (A - ) in water: HA (aq)  H + (aq) + A - (aq)  K a = [H + ][A - ] / [HA] A - (aq) + H 2 O(l)  HA(aq) + OH - (aq)  K b = [HA][OH - ] /[A - ]  K a x K b = [H + ][OH - ] = K w Chem 2_Dr. Dura 12

IB S TANDARDS Describe the composition of a buffer solution and explain its action Solve problems involving the composition and pH of a specified buffer system Deduce whether salts form acidic, alkaline or neutral aqueous solutions. 13 Chem2_Dr. Dura

B UFFER S OLUTIONS 14 Chem2_Dr. Dura A buffer solution is a solution of: 1. A weak acid or a weak base and 2. The salt of the weak acid or weak base Both must be present!

Chem2_Dr. Dura 15 The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance. The presence of a common ion suppresses the ionization of a weak acid or a weak base. Example: A buffer consisting of CH 3 COONa (salt) and CH 3 COOH (weak acid). CH 3 COONa (s) Na + (aq) + CH 3 COO - (aq) CH 3 COOH (aq) H + (aq) + CH 3 COO - (aq) common ion

16 A buffer solution has the ability to resist changes in pH upon the addition of small amounts of either acid or base. Add strong acid H + (aq) + CH 3 COO - (aq) CH 3 COOH (aq) Add strong base OH - (aq) + CH 3 COOH (aq) CH 3 COO - (aq) + H 2 O (l) How buffers work Consider an equal molar mixture of CH 3 COOH and CH 3 COONa Chem2_Dr. Dura

17 Consider mixture of salt NaA and weak acid HA. HA (aq) H + (aq) + A - (aq) NaA (s) Na + (aq) + A - (aq) K a = [H + ][A - ] [HA] [H + ] = K a [HA] [A - ] -log [H + ] = -log K a - log [HA] [A - ] -log [H + ] = -log K a + log [A - ] [HA] pH = pK a + log [A - ] [HA] pK a = -log K a

H ENDERSON -H ASSELBALCH EQUATION 18 pH = pK a + log [conjugate base] [acid] Chem2_Dr. Dura pH of buffers can be determined from Henderson- Hasselbalch Equation.

19 Exercise: Which of the following are buffer systems? (a) KF/HF (b) KBr/HBr, (c) Na 2 CO 3 /NaHCO 3 (a) KF is a weak acid and F - is its conjugate base buffer solution (b) HBr is a strong acid not a buffer solution (c) CO 3 2- is a weak base and HCO 3 - is its conjugate acid buffer solution Chem2_Dr. Dura

20 = 9.20 Problem: Calculate the pH of the 0.30 M NH 3 /0.36 M NH 4 Cl buffer system. What is the pH after the addition of 20.0 mL of M NaOH to 80.0 mL of the buffer solution? NH 4 + (aq) H + (aq) + NH 3 (aq) pH = pK a + log [NH 3 ] [NH 4 + ] pK a = 9.25 pH = log [0.30] [0.36] = 9.17 NH 4 + (aq) + OH - (aq) H 2 O (l) + NH 3 (aq) start (moles) end (moles) pH = log [0.25] [0.28] [NH 4 + ] = final volume = 80.0 mL mL = 100 mL [NH 3 ] = Chem2_Dr. Dura

21 Acid-Base Properties of Salts Neutral Solutions: Salts containing an alkali metal or alkaline earth metal ion (except Be 2+ ) and the conjugate base of a strong acid (e.g. Cl -, Br -, and NO 3 - ). NaCl (s) Na + (aq) + Cl - (aq) H2OH2O Basic Solutions: Salts derived from a strong base and a weak acid. NaCH 3 COOH (s) Na + (aq) + CH 3 COO - (aq) H2OH2O CH 3 COO - (aq) + H 2 O (l) CH 3 COOH (aq) + OH - (aq)

Chem2_Dr. Dura 22 Acid-Base Properties of Salts Acid Solutions: Salts derived from a strong acid and a weak base. NH 4 Cl (s) NH 4 + (aq) + Cl - (aq) H2OH2O NH 4 + (aq) NH 3 (aq) + H + (aq) Salts with small, highly charged metal cations (e.g. Al 3+, Cr 3+, and Be 2+ ) and the conjugate base of a strong acid. Al(H 2 O) 6 (aq) Al(OH)(H 2 O) 5 (aq) + H + (aq) 3+2+

Chem2_Dr. Dura 23 Acid-Base Properties of Salts Solutions in which both the cation and the anion hydrolyze : K b for the anion > K a for the cation, solution will be basic K b for the anion < K a for the cation, solution will be acidic K b for the anion  K a for the cation, solution will be neutral

IB S TANDARDS  Sketch the general shapes of graphs of pH and volume for titrations of strong and weak acids and bases and explain their important features.  Describe qualitatively the action of acid- base indicator.  State and explain how the pH range of an acid-base indicator relates to its pKa value.  Identify an appropriate indicator for a titration given the equivalence point of titration and the pH range of the indicator. 24 Chem2_Dr. Dura

25 Titrations In a titration a solution of accurately known concentration is added gradually to another solution of unknown concentration until the chemical reaction between the two solutions is complete. Equivalence point – the point at which the reaction is complete Indicator – substance that changes color at (or near) the equivalence point Slowly add base to unknown acid UNTIL The indicator changes color (pink) Chem2_Dr. Dura

26 Strong Acid-Strong Base Titrations NaOH (aq) + HCl (aq) H 2 O (l) + NaCl (aq) OH - (aq) + H + (aq) H 2 O (l) Chem2_Dr. Dura

27 Weak Acid-Strong Base Titrations CH 3 COOH (aq) + NaOH (aq) CH 3 COONa (aq) + H 2 O (l) CH 3 COOH (aq) + OH - (aq) CH 3 COO - (aq) + H 2 O (l) CH 3 COO - (aq) + H 2 O (l) OH - (aq) + CH 3 COOH (aq) At equivalence point (pH > 7): Chem2_Dr. Dura

28 Strong Acid-Weak Base Titrations HCl (aq) + NH 3 (aq) NH 4 Cl (aq) NH 4 + (aq) + H 2 O (l) NH 3 (aq) + H + (aq) At equivalence point (pH < 7): H + (aq) + NH 3 (aq) NH 4 Cl (aq) Chem2_Dr. Dura

29 Acid-Base Indicators HIn (aq) H + (aq) + In - (aq)  10 [HIn] [In - ] Color of acid (HIn) predominates  10 [HIn] [In - ] Color of conjugate base (In - ) predominates Chem2_Dr. Dura

30 The titration curve of a strong acid with a strong base. Chem2_Dr. Dura

31 Which indicator(s) would you use for a titration of HNO 2 with KOH ? Weak acid titrated with strong base. At equivalence point, will have conjugate base of weak acid. At equivalence point, pH > 7 Use cresol red or phenolphthalein Chem2_Dr. Dura

32 Acid-Base Properties of Salts Acid Solutions: Salts derived from a strong acid and a weak base. NH 4 Cl (s) NH 4 + (aq) + Cl - (aq) H2OH2O NH 4 + (aq) NH 3 (aq) + H + (aq) Salts with small, highly charged metal cations (e.g. Al 3+, Cr 3+, and Be 2+ ) and the conjugate base of a strong acid. Al(H 2 O) 6 (aq) Al(OH)(H 2 O) 5 (aq) + H + (aq) 3+2+ Chem2_Dr. Dura

33 Acid-Base Properties of Salts Solutions in which both the cation and the anion hydrolyze: K b for the anion > K a for the cation, solution will be basic K b for the anion < K a for the cation, solution will be acidic K b for the anion  K a for the cation, solution will be neutral Chem2_Dr. Dura

34 Chemistry In Action: Antacids and the Stomach pH Balance NaHCO 3 (aq) + HCl (aq) NaCl (aq) + H 2 O (l) + CO 2 (g) Mg(OH) 2 (s) + 2HCl (aq) MgCl 2 (aq) + 2H 2 O (l) Chem2_Dr. Dura