2.5 Implicit Differentiation. Implicit and Explicit Functions Explicit FunctionImplicit Function But what if you have a function like this…. To differentiate:

Slides:



Advertisements
Similar presentations
2.5 Implicit Differentiation Niagara Falls, NY & Canada Photo by Vickie Kelly, 2003.
Advertisements

The Chain Rule Section 3.6c.
Implicit Differentiation
2.5 The Chain Rule If f and g are both differentiable and F is the composite function defined by F(x)=f(g(x)), then F is differentiable and F′ is given.
Implicit Differentiation. Objectives Students will be able to Calculate derivative of function defined implicitly. Determine the slope of the tangent.
Section 2.5 – Implicit Differentiation
Aim: What Is Implicit Differentiation and How Does It Work?
Implicit Differentiation
Chapter : Derivatives Section 3.7: Implicit Differentiation
Implicit Differentiation
Implicit Differentiation 3.6. Implicit Differentiation So far, all the equations and functions we looked at were all stated explicitly in terms of one.
Quiz corrections due Friday. 2.5 Implicit Differentiation Niagara Falls, NY & Canada Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie.
Differentiation Copyright © Cengage Learning. All rights reserved.
1 Implicit Differentiation Lesson Introduction Consider an equation involving both x and y: This equation implicitly defines a function in x It.
Section 2.5 – Implicit Differentiation. Explicit Equations The functions that we have differentiated and handled so far can be described by expressing.
3.7 Implicit Differentiation Niagara Falls, NY & Canada Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
Implicit Differentiation Niagara Falls, NY & Canada Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
1 Implicit Differentiation. 2 Introduction Consider an equation involving both x and y: This equation implicitly defines a function in x It could be defined.
Calculus: IMPLICIT DIFFERENTIATION Section 4.5. Explicit vs. Implicit y is written explicitly as a function of x when y is isolated on one side of the.
Section 2.5 Implicit Differentiation
Implicit Differentiation By: Kyle Horvath & Dohyun Kim & John Schafer & Matt Boveri.
Ms. Battaglia AB/BC Calculus. Up to this point, most functions have been expressed in explicit form. Ex: y=3x 2 – 5 The variable y is explicitly written.
Homework questions? 2-5: Implicit Differentiation ©2002 Roy L. Gover ( Objectives: Define implicit and explicit functions Learn.
Objectives: 1.Be able to determine if an equation is in explicit form or implicit form. 2.Be able to find the slope of graph using implicit differentiation.
Warm-Up: Find f’(x) if f(x)=(3x 2 -6x+2) 3. SECTION 6.4: IMPLICIT DIFFERENTIATION Objective: Students will be able to…  Take the derivative of implicitly.
Slide 3- 1 Quick Quiz Sections 3.4 – Implicit Differentiation.
Copyright © Cengage Learning. All rights reserved.
Implicit Differentiation Objective: To find derivatives of functions that we cannot solve for y.
Section 3.5 Implicit Differentiation 1. Example If f(x) = (x 7 + 3x 5 – 2x 2 ) 10, determine f ’(x). Now write the answer above only in terms of y if.
3.7 Implicit Differentiation Niagara Falls, NY & Canada Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
You can do it!!! 2.5 Implicit Differentiation. How would you find the derivative in the equation x 2 – 2y 3 + 4y = 2 where it is very difficult to express.
Implicit differentiation (2.5) October 29th, 2012.
Calculus and Analytical Geometry
Lesson: ____ Section: 3.7  y is an “explicitly defined” function of x.  y is an “implicit” function of x  “The output is …”
3.8 Implicit Differentiation Niagara Falls, NY & Canada Photo by Vickie Kelly, 2003.
Implicit Differentiation 3.5. Explicit vs. Implicit Functions.
René Descartes 1596 – 1650 René Descartes 1596 – 1650 René Descartes was a French philosopher whose work, La géométrie, includes his application of algebra.
Lesson 3-7: Implicit Differentiation AP Calculus Mrs. Mongold.
UNIT 2 LESSON 9 IMPLICIT DIFFERENTIATION 1. 2 So far, we have been differentiating expressions of the form y = f(x), where y is written explicitly in.
Implicit Differentiation Niagara Falls, NY & Canada Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
3.5 Implicit Differentiation
2.5 The Chain Rule If f and g are both differentiable and F is the composite function defined by F(x)=f(g(x)), then F is differentiable and F′ is given.
Implicit Differentiation
Implicit Differentiation
Implicit Differentiation
Copyright © Cengage Learning. All rights reserved.
Implicit Differentiation
Section 3.7 Implicit Functions
3.6 Warm-Up Find y´´ Find the Derivative:.
2.5 Implicit Differentiation
Implicit Differentiation
MTH1170 Implicit Differentiation
Implicit Differentiation Implicit differentiation
Copyright © Cengage Learning. All rights reserved.
Implicit Differentiation
3.7 Implicit Differentiation
2.5 Implicit Differentiation
Implicit Differentiation
Implicit Differentiation
Implicit Differentiation
Unit 3 Lesson 5: Implicit Differentiation
Implicit Differentiation
Implicit Differentiation
2.5 Implicit Differentiation
Implicit Differentiation & Related Rates
3.7 Implicit Differentiation
3.5 Implicit Differentiation
Presentation transcript:

2.5 Implicit Differentiation

Implicit and Explicit Functions Explicit FunctionImplicit Function But what if you have a function like this…. To differentiate: Use implicit differentiation.

Implicit Differentiation To find dy/dx implicitly, you must realize that the differentiation is taking place with respect to x. x alone  derive as usual y?  need to use chain rule!

Examples: Differentiating with Respect to x Variables agree  use simple power rule Variables disagree  use chain rule

Examples: Differentiating with Respect to x

Guidelines for Implicit Differentiation 1.Differentiate both sides of the equation with respect to x. 2.Collect all terms involving dy/dx on the left side and all other terms to the right. 3.Factor out dy/dx. 4.Solve for dy/dx

This is not a function, but it would still be nice to be able to find the slope. Example 1:

This can’t be solved for y. Example 2:

Find the equation of the tangent line to the curve at (-1, 2) Example 3:

Higher Order Derivatives Find if. Example 4:

More Examples