CHE 240 Unit IV Stereochemistry, Substitution and Elimination Reactions CHAPTER FIVE Terrence P. Sherlock Burlington County College 2004.

Slides:



Advertisements
Similar presentations
Handout #6, 5.12 Spring 2003, 2/28/03 Stereochemistry stereochemistry: study of the spatial characteristics of a molecule stereocenter: atom bonded to.
Advertisements

3-dimensional Aspects of Tetrahedral Atoms
Unit 3 Stereochemistry.  Chirality and Stereoisomers  Configuration vs. Conformation  (R) and (S) Configurations  Optical Activity  Fischer Projections.
9. Stereochemistry Based on McMurry’s Organic Chemistry, 7th edition.
153 Symmetry Monarch butterfly: bilateral symmetry= mirror symmetry Whenever winds blow butterflies find a new place on the willow tree -Basho (~1644 -
Optical Activity Enantiomers are different compounds:
STEREOCHEMISTRY Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , 7.5.
The word chiral derives from the Greek word ceir (cheir), meaning hand. Our hands are chiral - the right hand is a mirror image of the left - as are most.
Chapter 5- Chirality. Chirality A chiral object is an object that possesses the property of handedness A chiral object, such as each of our hands, is.
Unit 3 – Stereochemistry
Organic Chemistry 4 th Edition Paula Yurkanis Bruice Irene Lee Case Western Reserve University Cleveland, OH ©2004, Prentice Hall Chapter 5 Stereochemistry.
Nomenclature of organic compounds
Organic Chemistry, 8th Edition L. G. Wade, Jr.
Organic Chemistry Stereochemistry. Isomers compounds with the same molecular formula but not identical structures.
The study of the three dimensional structure of molecules.
1 Stereochemistry Prof. Dr. Harno Dwi Pranowo Austrian-Indonesian Center for Computational Chemistry Chemistry Department, FMIPA UGM.
constitutional isomers:
Chapter 5 Stereochemistry
Definitions o Stereochemistry refers to the 3-dimensional properties and reactions of molecules. o It has its own language and terms that need to be learned.
Bio Organic Chemistry Stereochemistry. Review of Isomers.
Chapter 6 Stereochemistry.
© 2013 Pearson Education, Inc. Stereochemistry Stereochemistry refers to the 3-dimensional properties and reactions of molecules. It has its own language.
Chapter 6 Stereochemistry
Stereoisomerism Nanoplasmonic Research Group Organic Chemistry Chapter 5.
Chapter 5 Stereochemistry
Stereochemistry.
4 Types of Isomers Structural Isomers/(Constitutional)
3 3-1 Organic Chemistry William H. Brown & Christopher S. Foote.
Stereochemistry Stereoisomerism.
Chapter 4: Stereochemistry. Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C 7 H 16 : 2-methylhexame.
Stereochemistry The arrangement of atoms in space By: Dr. Manal F. Abou Taleb Organic Chemistry, 5 th Edition L. G. Wade, Jr. chapter 5.
Stereochemistry & Chiral Molecules. Isomerism Isomers are different compounds with the same molecular formula 1) Constitutional isomers: their atoms are.
CH 9: Stereochemistry Renee Y. Becker CHM 2210 Valencia Community College 1.
CHE 311 Organic Chemistry I Dr. Jerome K. Williams, Ph.D. Saint Leo University.
4 Types of Isomers. 1.Structural Isomers/(Constitutional) 2.Geometric Isomers/(Cis/Trans) 3.Optical Isomers A.Enantiomers B.Diastereomers.
Chapter 5 Stereochemistry Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2003,  Prentice Hall Organic Chemistry,
Optical Activity.
CHE 311 Organic Chemistry I Dr. Jerome K. Williams, Ph.D. Saint Leo University.
Stereochemistry Dr. Sheppard CHEM 2411 Spring 2015
Subtle Changes Create Fragrant Differences
Stereochemistry. 2 Chirality Handedness“ Handedness ”: Right glove doesn’t fit the left hand. Mirror-imageMirror-image object is different from the original.
Stereochemistry Chiral Molecules
Chapter 5 Stereochemistry
Stereochemistry at Tetrahedral Centers
Chapter 5 Stereochemistry: Chiral Molecules 1.
Stereochemistry Constitutional Isomers: same molecular formula, different connectivity. Stereoisomers: same molecular formula, same connectivity, different.
Chemistry 2100 Chapter 15. Enantiomers Enantiomers: Enantiomers: Nonsuperposable mirror images. –As an example of a molecule that exists as a pair of.
Chapter 5 Stereochemistry: Chiral Molecules
1 ISOMERISM. 2 Contents Isomers-Definitions Geometrical isomers Nomenclature for Geometrical isomers Optical Isomerism Nomenclature For Optical Isomers.
Chapter 5 Stereochemistry Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry,
Chiral Molecules Chapter 5.
Stereochemistry 240 Chem Chapter 5 1. Isomerism Isomers are different compounds that have the same molecular formula.
© 2016 Pearson Education, Inc. Isomers: The Arrangement of Atoms in Space Paula Yurkanis Bruice University of California, Santa Barbara Chapter 4.
Organic Chemistry, 8th Edition L. G. Wade, Jr.
Isomers Are different compounds with the same molecular formula
Enantiomers rotate plane polarized light the same magnitude, but opposite directions. clockwise rotation – dextrarotatory (d or +) counterclockwise.
Stereochemistry Chiral Molecules
Organic Chemistry, 9th Edition L. G. Wade, Jr.
University of California,
Stereoisomerism.
Chapter 5 Stereochemistry: Chiral Molecules
Chapter 5 Stereochemistry: Chiral Molecules
240 Chem Stereochemistry Chapter 5.
Unit 3 – Stereochemistry
Chapter 4: Stereochemistry
240 Chem Stereochemistry Chapter 5.
Symmetry Monarch butterfly: bilateral symmetry= mirror symmetry 153.
Organic Chemistry, 7th Edition L. G. Wade, Jr.
Stereochemistry Stereochemistry refers to the
240 Chem Stereochemistry Chapter 5.
Presentation transcript:

CHE 240 Unit IV Stereochemistry, Substitution and Elimination Reactions CHAPTER FIVE Terrence P. Sherlock Burlington County College 2004

Chapter 52 Chiral Carbons Tetrahedral carbons with 4 different attached groups are chiral. Its mirror image will be a different compound (enantiomer). =>

Chapter 53 Mirror Planes of Symmetry If two groups are the same, carbon is achiral. (animation) A molecule with an internal mirror plane cannot be chiral.* Caution! If there is no plane of symmetry, molecule may be chiral or achiral. See if mirror image can be superimposed. =>

Chapter 54 (R), (S) Nomenclature Different molecules (enantiomers) must have different names. Usually only one enantiomer will be biologically active. Configuration around the chiral carbon is specified with (R) and (S). =>

Chapter 55 Cahn-Ingold-Prelog Rules Assign a priority number to each group attached to the chiral carbon. Atom with highest atomic number assigned the highest priority #1. In case of ties, look at the next atoms along the chain. Double and triple bonds are treated like bonds to duplicate atoms. =>

Chapter 56 Assign (R) or (S) Working in 3D, rotate molecule so that lowest priority group is in back. Draw an arrow from highest to lowest priority group. Clockwise = (R), Counterclockwise = (S) =>

Chapter 57 Properties of Enantiomers Same boiling point, melting point, density Same refractive index Different direction of rotation in polarimeter Different interaction with other chiral molecules –Enzymes –Taste buds, scent =>

Chapter 58 Optical Activity Rotation of plane-polarized light Enantiomers rotate light in opposite directions, but same number of degrees. =>

Chapter 59 Polarimetry Use monochromatic light, usually sodium D Movable polarizing filter to measure angle Clockwise = dextrorotatory = d or (+) Counterclockwise = levorotatory = l or (-) Not related to (R) and (S) =>

Chapter 510 Biological Discrimination =>

Chapter 511 Racemic Mixtures Equal quantities of d- and l- enantiomers. Notation: (d,l) or (  ) No optical activity. The mixture may have different b.p. and m.p. from the enantiomers! =>

Chapter 512 Racemic Products If optically inactive reagents combine to form a chiral molecule, a racemic mixture of enantiomers is formed. =>

Chapter 513 Nonmobile Conformers If the conformer is sterically hindered, it may exist as enantiomers. =>

Chapter 514 Fischer Projections Flat drawing that represents a 3D molecule A chiral carbon is at the intersection of horizontal and vertical lines. Horizontal lines are forward, out-of-plane. Vertical lines are behind the plane.

Chapter 515 Fischer Rules Carbon chain is on the vertical line. Highest oxidized carbon at top. Rotation of 180  in plane doesn’t change molecule. Do not rotate 90  ! Do not turn over out of plane! =>

Chapter 516 Fischer Mirror Images Easy to draw, easy to find enantiomers, easy to find internal mirror planes. Examples: =>

Chapter 517 Fischer (R) and (S) Lowest priority (usually H) comes forward, so assignment rules are backwards! Clockwise is (S) and counterclockwise is (R). Example: (S)(S) (S) =>

Chapter 518 Diastereomers Stereoisomers that are not mirror images. Geometric isomers (cis-trans) Molecules with 2 or more chiral carbons. =>

Chapter 519 Alkenes Cis-trans isomers are not mirror images, so these are diastereomers. =>

Chapter 520 Ring Compounds Cis-trans isomers possible. May also have enantiomers. Example: trans-1,3-dimethylcylohexane =>

Chapter 521 Two or More Chiral Carbons Enantiomer? Diastereomer? Meso? Assign (R) or (S) to each chiral carbon. Enantiomers have opposite configurations at each corresponding chiral carbon. Diastereomers have some matching, some opposite configurations. Meso compounds have internal mirror plane. Maximum number is 2 n, where n = the number of chiral carbons. =>

Chapter 522 Examples =>

Chapter 523 Fischer-Rosanoff Convention Before 1951, only relative configurations could be known. Sugars and amino acids with same relative configuration as (+)-glyceraldehyde were assigned D and same as (-)-glyceraldehyde were assigned L. With X-ray crystallography, now know absolute configurations: D is (R) and L is (S). No relationship to dextro- or levorotatory. =>

Chapter 524 D and L Assignments * * * =>

Chapter 525 Properties of Diastereomers Diastereomers have different physical properties: m.p., b.p. They can be separated easily. Enantiomers differ only in reaction with other chiral molecules and the direction in which polarized light is rotated. Enantiomers are difficult to separate. =>

Chapter 526 Resolution of Enantiomers React a racemic mixture with a chiral compound to form diastereomers, which can be separated. =>

Chapter 527 Chromatographic Resolution of Enantiomers =>

Chapter 528 POWER POINT IMAGES FROM “ORGANIC CHEMISTRY, 5 TH EDITION” L.G. WADE ALL MATERIALS USED WITH PERMISSION OF AUTHOR PRESENTATION ADAPTED FOR BURLINGTON COUNTY COLLEGE ORGANIC CHEMISTRY COURSE BY: ANNALICIA POEHLER STEFANIE LAYMAN CALY MARTIN