Chapter 11 DNA & GENES.

Slides:



Advertisements
Similar presentations
Chapter 13 DNA, RNA and Proteins.
Advertisements

In 1928, Frederick Griffith, a bacteriologist, was trying to prepare a vaccine against pneumonia.
Chapter 10 Table of Contents Section 1 Discovery of DNA
Chapter 12 DNA & RNA.
Chapter 10 Table of Contents Section 1 Discovery of DNA
Nucleic Acids and Protein Synthesis
Nucleic Acids & Protein Synthesis
DNA and RNA. I. DNA Structure Double Helix In the early 1950s, American James Watson and Britain Francis Crick determined that DNA is in the shape of.
13.3: RNA and Gene Expression
Traits, such as eye color, are determined By proteins that are built according to The instructions specified in the DNA.
DNA Chapter 10.
DNA, RNA & Protein Synthesis.
CHAPTER 10: DNA,RNA & Protein Synthesis
DNA Replication and Protein Synthesis
DNA & Genetics Biology. Remember chromosomes? What are genes? Made up of DNA and are units of heredity; unique to everyone What are traits? Are physical.
DNA, RNA, and Proteins.  Students know and understand the characteristics and structure of living things, the processes of life, and how living things.
DNA: The Genetic Material
Biology 10.1 How Proteins are Made:
DNA: The Genetic Material Chapter 9. Mendel’s work was published 1865 and he died in 1884 Mendel’s work was published 1865 and he died in 1884 His work.
NUCLEIC ACIDS AND PROTEIN SYNTHESIS. QUESTION 1 DNA.
DNA & PROTEIN SYNTHESIS CHAPTERS 9 &10. Main Idea How are proteins made in our bodies?
Section 10 – 1 Objectives Explain the principal function of DNA.
1  Walter Sutton discovered chromosomes were made of DNA and Protein  However, scientists were NOT sure which one (protein or DNA) was the actual genetic.
Mrs. Degl Molecular Genetics DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. Nearly every cell in a.
The Central Dogma of Molecular Biology DNA → RNA → Proteins Biology II D. Mitchell.
KEY CONCEPT DNA structure is the same in all organisms.
DNA, RNA & Protein Synthesis.
KEY CONCEPT DNA structure is the same in all organisms.
Lecture #3 Transcription Unit 4: Molecular Genetics.
DNA, RNA, and Proteins Section 3 Section 3: RNA and Gene Expression Preview Bellringer Key Ideas An Overview of Gene Expression RNA: A Major Player Transcription:
DNA “The Molecule of Life”. Do Now What is DNA? Why is it important? Who helped to discover DNA and it’s structure? Draw a picture of what you think DNA.
DNA The Code of Life.
Ms. Hughes.  Mendel showed that traits are passed from parent to offspring.  Instructions for how genes are inherited.  Genes are made up of segments.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How Proteins Are Made Chapter 10 Table of Contents Section 1 From.
DNA, RNA & Protein Synthesis.
Nucleic Acids and Protein Synthesis 10 – 1 DNA 10 – 2 RNA 10 – 3 Protein Synthesis.
8.2 Structure of DNA KEY CONCEPT DNA structure is the same in all organisms.
DNA RNA & Proteins. James Watson & Francis Crick and Their DNA Model.
Structure of DNA DNA is made up of a long chain of nucleotides
8-2 DNA Structure & Replication  DNA - Carries information about heredity on it genes.  Deoxyribonucleic Acid  belongs to the class of macromolecules.
DNA: The Genetic Material. The Structure of DNA The Replication of DNA.
DNA, RNA and PROTEIN SYNTHESIS. WHAT MAKES UP DNA? IT IS A MOLECULE COMPOSED OF CHEMICAL SUBUNITS CALLED NUCLEOTIDES.
DNA Deoxyribose Nucleic Acid – is the information code to make an organism and controls the activities of the cell. –Mitosis copies this code so that all.
DNA. Unless you have an identical twin, you, like the sisters in this picture will share some, but not all characteristics with family members.
DNA, RNA, and Protein Synthesis
Chapter 10: Nucleic Acids And Protein Synthesis Essential Question: What roles do DNA and RNA play in storing genetic information?
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu How Proteins Are Made Chapter 10 Table of Contents Section 1 From.
Chapter 10: Nucleic Acids and Protein Synthesis. DNA DNA (Deoxyribonucleic acid) –Stores and transmits genetic information –Double stranded molecule (looks.
DNA and Replication, RNA and Transcription, Translation (= Transcription and Translation = processes in protein synthesis)
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Overview Section 2 The Structure of DNA DNA.
Chapter 10 Section 1 By PresenterMedia.com PresenterMedia.com.
DNA and RNA Structure of DNA Chromosomes and Replication Transcription and Translation Mutation and Gene Regulation.
Chapter 9 Table of Contents Section 1 Identifying the Genetic Material
What is a genome? The complete set of genetic instructions (DNA sequence) of a species.
Section 3: RNA and Gene Expression
DNA – Deoxyribonucleic Acid
DNA.
DNA and Genes Chapter 11.
Chapter 10 Table of Contents Section 1 Discovery of DNA
DNA, RNA, Transcription & Replication
How to Use This Presentation
Chapter 8.4 How Proteins are Made
How Proteins are Made Biology I: Chapter 10.
DNA and Genes Chapter 13.
Chapter 10 DNA, RNA, and Protein Synthesis
Chapter 10 DNA, RNA, and Protein Synthesis
How Proteins are Made.
An Overview of Gene Expression
Presentation transcript:

Chapter 11 DNA & GENES

By the early 1950’s, most scientists were convinced 11-1 The Structure of DNA By the early 1950’s, most scientists were convinced That genes were made of DNA. The problem is that no one knew what it looked like. Then along came James Watson & Francis Crick.

James Watson and Francis Crick

A Winding Staircase Watson and Crick determined that a DNA molecule is a double helix—two strands twisted around each other, like a winding staircase. Nucleotides are the subunits that make up DNA. Each nucleotide is made of three parts: a phosphate group, a five-carbon sugar molecule, and a nitrogen-containing base

The five-carbon sugar in DNA nucleotides is called deoxyribose Structure of a Nucleotide

DNA Double Helix

The nitrogen base in a nucleotide can be either a bulky, double-ring purine, or a smaller, single-ring pyrimidine.

Discovering DNA’s Structure Chargaff’s Observations In 1949, Erwin Chargaff observed that for each organism he studied, the amount of adenine always equaled the amount of thymine (A=T) Likewise, the amount of guanine always equaled the amount of cytosine (G=C). However, the amount of adenine and thymine and of guanine and cytosine varied between different organisms

X-Ray Diffraction

Watson and Crick’s DNA Model In 1953, Watson and Crick built a model of DNA with the configuration of a double helix, a “spiral staircase” of two strands of nucleotides twisting around a central axis The double-helix model of DNA takes into account Chargaff’s observations and the patterns on Franklin’s X-ray diffraction photographs.

These base-pairing rules are supported by Chargaff’s observations Pairing Between Bases An adenine on one strand always pairs with a thymine on the opposite strand, and a guanine on one strand always pairs with a cytosine on the opposite strand These base-pairing rules are supported by Chargaff’s observations The strictness of base-pairing results in two strands that contain complementary base pairs

In the diagram of DNA below, the helix makes it easier to visualize the base-pairing that occurs between DNA strands

The Replication of DNA When the double helix was discovered, scientists were very excited about the complimentary relationship between the sequences of nucleotides. Watson and Crick proposed that one DNA strand serves as a template on which the other strand is built.

Roles of Enzymes in DNA Replication The complementary structure of DNA is used as a basis to make exact copies of the DNA each time a cell divided. The process of making a copy of DNA is called DNA replication DNA replication occurs during the synthesis (S) phase of the cell cycle, before a cell divides DNA replication occurs in three steps

Step 1- DNA helicases open the double helix by breaking the hydrogen bonds that link the complementary nitrogen bases between the two strands. The areas where the double helix separates are called replication forks

Step 2 - At the replication fork, enzymes known as DNA polymerases move along each of the DNA strands. DNA polymerases add nucleotides to the exposed nitrogen bases, according to the base-pairing rules Step 3 - Two DNA molecules that form are identical to the original DNA molecule

Checking for Errors In the course of DNA replication, errors sometimes occur and the wrong nucleotide is added to the new strand. An important feature of DNA replication is that DNA polymerases have a “proofreading” role This proofreading reduces errors in DNA replication to about one error per 1 billion nucleotides

In eukaryotic cells, each chromosome contains a single, long strand of DNA Each human chromosome is replicated in about 100 sections that are 100,000 nucleotides long, each section with its own starting point With multiple replication forks working in concert, an entire human chromosome can be replicated in about 8 hours

Replication Forks

Traits, such as eye color, are determined 11-2 RNA & Protein Traits, such as eye color, are determined By proteins that are built according to The instructions specified in the DNA.

Decoding the Information in DNA Proteins, however, are not built directly from DNA. Ribonucleic acid is also involved Like DNA, ribonucleic acid (RNA) is a nucleic acid—a molecule made of nucleotides linked together

RNA differs from DNA in three ways 1. RNA consists of a single strand of nucleotides instead of the two strands found in DNA 2. RNA nucleotides contain the five-carbon sugar ribose rather than the sugar deoxyribose, which is found in DNA nucleotides 3. In addition to the A, G, and C nitrogen bases found in DNA, RNA nucleotides can have a nitrogen base called uracil (U)

Comparing DNA and RNA The instructions for making a protein are transferred from a gene to an RNA molecule in a process called transcription Cells then use two different types of RNA to read the instructions on the RNA molecule and put together the amino acids that make up the protein in a process called translation

The entire process by which proteins are made based on the information encoded in DNA is called gene expression, or protein synthesis

Gene Expression

Transfer of Information from DNA to RNA The first step in the making of a protein, transcription, takes the information found in a gene in the DNA and transfers it to a molecule of RNA RNA polymerase, an enzyme that adds and links complementary RNA nucleotides during transcription, is required

The three steps of transcription are Step 1 RNA polymerase binds to the gene’s promoter Step 2 The two DNA strands unwind and separate Step 3 Complementary RNA nucleotides are added

Types of RNA

Genetic Code: Three-Nucleotide “Words” Different types of RNA are made during transcription, depending on the gene being expressed When a cell needs a particular protein, it is messenger RNA that is made Messenger RNA (mRNA) is a form of RNA that carries the instructions for making a protein from a gene and delivers it to the site of translation

The information is translated from the language of RNA—nucleotides—to the language of proteins—amino acids The RNA instructions are written as a series of three-nucleotide sequences on the mRNA called codons The genetic code of mRNA is the amino acids and “start” and “stop” signals that are coded for by each of the possible 64 mRNA codons

RNA’s Roles in Translation Translation takes place in the cytoplasm. Here transfer RNA molecules and ribosomes help in the synthesis of proteins Transfer RNA (tRNA) molecules are single strands of RNA that temporarily carry a specific amino acid on one end An anticodon is a three-nucleotide sequence on a tRNA that is complementary to an mRNA codon.

Ribosomes are composed of both proteins and ribosomal RNA (rRNA) Ribosomal RNA (rRNA) molecules are RNA molecules that are part of the structure of ribosomes Each ribosome temporarily holds one mRNA and two tRNA molecules

The seven steps of translation are: Step 1 The ribosomal subunits, the mRNA, and the tRNA carrying methionine bind together Step 2 The tRNA carrying the amino acid specified by the codon in the A site arrives Step 3 A peptide bond forms between adjacent amino acids Step 4 The tRNA in the P site detaches and leaves its amino acid behind

Step 5 The tRNA in the A site moves to the P site Step 5 The tRNA in the A site moves to the P site. The tRNA carrying the amino acid specified by the codon in the A site arrives Step 6 A peptide bond is formed. The tRNA in the P site detaches and leaves its amino acid behind Step 7 The process is repeated until a stop codon is reached. The ribosome complex falls apart. The newly made protein is released

THE END