Zheng-Tian Lu Physics Division, Argonne National Laboratory Department of Physics, University of Chicago Search for a Permanent Electric Dipole Moment.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
Ra-225: The Path to a Next Generation EDM Experiment
Search for the Schiff Moment of Radium-225
Electric dipole moment searches
University of Liverpool
Searching for the electron’s EDM
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
Electric dipole moments : a search for new physics E.A. Hinds Manchester, 12 Feb 2004 Imperial College London.
B. Lee Roberts, HIFW04, Isola d’Elba, 6 June p. 1/39 Future Muon Dipole Moment Measurements at a high intensity muon source B. Lee Roberts Department.
Search for the Electron Electric Dipole Moment Val Prasad Yale University Experiment: D.DeMille, D. Kawall, R.Paolino, V. Prasad F. Bay, S. Bickman, P.Hamilton,
Weak Interactions in the Nucleus III Summer School, Tennessee June 2003.
Histogram of Blinded eEDM Data Number of Measurements T-Statistic of Blinded eEDM Measurements Order of Magnitude Smaller Limit on the Electric Dipole.
Trapped Radioactive Isotopes:  icro-laboratories for fundamental Physics EDM in ground state (I=1/2) H = -(d E + μ B) · I/I m I = 1/2 m I = -1/2 2ω12ω1.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Measurement of the electron’s electric dipole moment
Electric Dipole Moment Goals and “New Physics” William J. Marciano 12/7/09 d p with e-cm sensitivity! Why is it important?
Electric Dipole Moment of Neutron and Neutrinos
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
Search for an Atomic EDM with
Fundamental interaction and nuclear structure studies with atom traps Peter Müller.
Fundamental Physics With Cold and Ultra-cold Neutrons Albert Young North Carolina State University.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Future electron EDM measurements using YbF
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
Deuteron Polarimeter for Electric Dipole Moment Search Ed Stephenson Indiana University Cyclotron Facility DIPOLES: μ·B + ־ reverse time + ־ d·Ed·E commonplace.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
A new measurement of the electron’s electric dipole moment using YbF molecules Mike Tarbutt Centre for Cold Matter, Imperial College London. International.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Measuring the Electron EDM Using Ytterbium Fluoride (YbF) Molecules
Experiments with Stark-decelerated and trapped polar molecules Steven Hoekstra Molecular Physics Department ( Gerard Meijer) Fritz-Haber-Institutder Max-Planck-Gesellschaft.
Atomic Parity Violation in Francium
CP-Violation and Baryon Asymmetry in Universe Electric Dipole Moments of Fundamental Particles Yannis K. Semertzidis Brookhaven National Lab Colloquium.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Possible measurement of electron EDM in atoms with spatially alternating electric field T. Haseyama RIKEN, Japan ( The Institute of Physical and Chemical.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Parity nonconservation in the 6s 2 1 S 0 – 6s5d 3 D 1 transition in Atomic Ytterbium: status of the Berkeley experiments K. Tsigutkin, J. Stalnaker, V.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Electric dipole moment searches E.A. Hinds Birmingham 11 th July 2011 Centre for Cold Matter Imperial College London.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Precision spectroscopy of trapped HfF + with a coherence time of 1 second Kevin Cossel JILA eEDM collaboration.
Electric Dipole Moment Searches in Nuclei, Atoms, and Molecules Dave Kawall - RIKEN BNL Research Center and UMass D S RBRC Symposium, BNL, June 19th, 2006.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Neutron and electron EDMs PPAP meeting, Birmingham, 18 th September 2012 Mike Tarbutt Centre for Cold Matter, Imperial College London.
The YbF T-violaton experiment Ben Sauer. YbF experiment (2011) d e < 1 x e.cm (90% c.l.) We (and others!) are aiming here! What is interesting.
Tests of Symmetries with Neutrons and Nuclei at Very Low Energies Stephan Paul TU-München.
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
Measurement of time reversal violation in YbF Ben Sauer.
Standard Model Tests with Nuclei and Energy Applications Jerry Nolen, ANL and Guy Savard, ANL/Uof C (Standard Model) Yousry Gohar, ANL and Shekhar Mishra,
APV Anapole Moment in Yb (status) and Some Other Topics in Atomic Parity Violation Dmitry Budker University of California, Berkeley Nuclear Science Division,
1 m Tungsten Carbide Spectroscopy for electron EDM Measurement Jeongwon Lee June 23, 2011 Jinhai Chen, and Aaron E. Leanhardt Department of Physics, University.
Yannis K. Semertzidis Brookhaven National Laboratory New opportunities at CERN CERN, 12 May 2009 Storage Ring EDM Experiments The storage ring method can.
 The electron electric dipole moment (eEDM) is aligned with the spin and interacts with the giant (~84 GV/cm) effective internal electric field of the.
Neutron and electron electric dipole moments
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Electric Dipole Moments: Searches at Storage Rings
Electric Dipole Moments: Searches at Storage Rings
electric dipole moments (EDM)
University of California, Berkeley
Outline “Search for octupole-deformed nuclei for enhancement of atomic EDM” 1Umesh Silwal, 2Prajwal Mohanmurthy, 1Durga P. Siwakoti, 1Jeff A. Winger 1Mississippi State University.
Searches for atomic electric dipole moments
Presentation transcript:

Zheng-Tian Lu Physics Division, Argonne National Laboratory Department of Physics, University of Chicago Search for a Permanent Electric Dipole Moment (EDM) of Radium-225 T EDMSpinEDMSpin _ + P EDM Spin _ ++ _

More CP-Violation Mechanisms? Supersymmetry More particles  More CP-violating phases Strong CP problem CP-violating phase in Quantum Chromodynamics Matter-antimatter asymmetry Require additional CP-violation mechanism(s) CPT=

Intensity Frontier Workshop, Dec 2011, Convenors for nuclear physics: Haxton, Lu, Ramsey-Musolf “The existence of an EDM can provide the “missing link” for explaining why the universe contains more matter than antimatter.” “A nonzero EDM would constitute a truly revolutionary discovery.” -- Nuclear Science Advisory Committee (NSAC) Long Range Plan (2007) “The non-observation of EDMs to-date, thus provides tight restrictions to building theories beyond the Standard Model.” -- P5 report : The Particle Physics Roadmap (2006) Priorities according to Nima Arkani-Hamed, Institute for Advanced Study

EDM Searches in Three Sectors Nucleons (n, p) Diamagnetic atoms (Hg, Ra, Rn) Electron in paramagnetic molecules (YbF, ThO) Quark EDM Quark Chromo-EDM 4 Fermion, 3 Gluon Electron EDM, Electron-Quark Physics beyond the Standard Model: SUSY, etc. SectorExp Limit (e-cm) MethodStandard Model Electron9 x ThO in a beam Neutron3 x UCN in a bottle Hg3 x Hg atoms in a cell M. Ramsey-Musolf (2009)

1S01S0 DsRgCn Uut Fl Uup Lv UusUuo 1S01S0

Schiff moment of 225 Ra, Dobaczewski, Engel, PRL (2005) Schiff moment of 199 Hg, Dobaczewski, Engel et al., PRC (2010) IsoscalarIsovector Skyrme SIII Skyrme SkM* Skyrme SLy Enhancement Factor: EDM ( 225 Ra) / EDM ( 199 Hg) Closely spaced parity doublet – Haxton & Henley, PRL (1983) Large Schiff moment due to octupole deformation – Auerbach, Flambaum & Spevak, PRL (1996) Relativistic atomic structure ( 225 Ra / 199 Hg ~ 3) – Dzuba, Flambaum, Ginges, Kozlov, PRA (2002) EDM of 225 Ra enhanced and more reliably calculated       55 keV || || Parity doublet “[Nuclear structure] calculations in Ra are almost certainly more reliable than those in Hg.” – Engel, Ramsey-Musolf, van Kolck, Prog. Part. Nucl. Phys. (2013) Constraining parameters in a global EDM analysis. – Chupp, Ramsey-Musolf, arXiv (2014)

Efficient use of the rare 225 Ra atoms High electric field (> 100 kV/cm) Long coherence time (~ 100 s) Negligible “v x E” systematic effect EDM measurement on 225 Ra in a trap Transverse cooling Oven: 225 Ra Zeeman Slower Magneto-optical Trap (MOT) Optical dipole trap (ODT) EDM measurement 225 Ra: I = ½ t 1/2 = 15 d 225 Ra: I = ½ t 1/2 = 15 d Collaboration of Argonne, Kentucky, Michigan State Statistical uncertainty 100 kV/cm 10% 100 s d Long-term goal:  d = 3 x e cm

Apparatus Argonne National Lab8

E max = 75 kV/cm E-field spatial variation < 1%/mm B ~ 10 mGauss B-field spatial variation < 0.1%/cm B-field temporal variation < 0.01% (50sec) EDM (d) Measurement

Radium EDM Data d Ra-225 = (-0.5 ± 2.5 stat ± 0.2 syst ) × e-cm |d Ra-225 | < 5.0 × e-cm (95% confidence) d Ra-225 = (-0.5 ± 2.5 stat ± 0.2 syst ) × e-cm |d Ra-225 | < 5.0 × e-cm (95% confidence) Oct. 2014Dec. 2014

First EDM measurement on octupole deformed nuclei; First EDM measurement using cold atoms.

Outlook Longer trap lifetime; Implement STIRAP – more efficient way to detect spin; , blue upgrade – more efficient trap; Five-year goal (before FRIB): e cm; 2020 and beyond (at FRIB): 3 x e cm; Far future: search for EDM in diatomic molecules Effective E field is enhanced by a factor of 10 3 ; Reach the Standard Model value of e cm.

Absorption Detection of Spin State 483 nm 1S01S0 1P11P1 Photons scattering events 2-3 photons per atom Signal-to-noise Ratio For 100 atoms, SNR ~ 0.2 m F = -1/2 +1/2 F = 1/2 F = 3/2

STIRAP (stimulated Raman adiabatic passage) 483 nm 1429 nm 1S01S0 1P11P1 3D13D1 Stimulated, Adiabatic process No fluorescence m F = -1/2 +1/2 F = 1/2 F = 3/2

Absorption Detection on a Cycling Transition 483 nm 1S01S0 1P11P1 3D13D1 Photons scattering events 2-3 photons per atom photons per atom Signal-to-noise Ratio For 100 atoms, SNR ~ 0.2 For 100 atoms, SNR ~ 10 m F = -1/2 +1/2 F = 1/2 F = 3/2 m F = +3/2

7p 1 P 1 Trap, 714 nm 7s 2 1 S 0 7p 3 P ns 6 ns 6d 3 D 1 Pump #1 7p 1 P 1 Slow & Trap, 714 nm 7s 2 1 S 0 7p 3 P ns 6 ns 6d 3 D 1 Pump #1 6d 1 D  s 6d 3 D 2 Improve trapping efficiency with a blue upgrade

Scheme 1 st slowing laser: 483 nm (strong) 2 nd slowing laser: 714 nm 3 repumpers: 1428 nm, 1488 nm, 2.75 mm 171 Yb as co-magnetometer * 225 Ra and 171 Yb trapped, < 50 mm apart Benefits 100 times more atoms in the trap Improved control on systematic uncertainties 7p 1 P 1 Trap, 714 nm 7s 2 1 S 0 7p 3 P ns 6 ns 6d 3 D 1 Pump #1 7p 1 P 1 Slow & Trap, 714 nm 7s 2 1 S 0 7p 3 P ns 6 ns 6d 3 D 1 Pump #1 6d 1 D  s 6d 3 D 2 Slow, 483 nm Pump #2 Pump #3 KVI b arium trap S. De et al. PRA (2009) Improve trapping efficiency with a blue upgrade Atom Velocity Atom Flux 60 m/s 310 m/s

Ra Yields 229 Th 7.3 kyr 225 Ra 15 d 225 Ac 10 d Fr, Rn,… ~4 hr  233 U 159 kyr   Presently available National Isotope Development Center, ORNL Decay daughters of 229 Th 225 Ra: 10 8 /s Projected FRIB (B. Sherrill, MSU) Beam dump recovery with a 238 U beam6 x 10 9 /s Dedicated running with a 232 Th beam5 x /s (I.C. Gomes and J. Nolen, Argonne) Deuterons on thorium target, 1 mA x 400 MeV = 400 kW10 13 /s MSU K1200 (R. Ronningen and J. Nolen, Argonne) Deuterons on thorium target, 10 uA x 400 MeV = 4 kW /s

Kevin Bailey Peter Mueller Tom O’Connor Cold Atom Trappers Argonne: Kevin Bailey, Michael Bishof, John Greene, Roy Holt, Nathan Lemke, Zheng-Tian Lu, Peter Mueller, Tom O’Connor, Richard Parker Kentucky: Mukut Kalita, Wolfgang Korsch Michigan State: Jaideep Singh Northwestern: Matt Dietrich Michael Bishof Richard Parker Mukut Kalita Roy Holt Z.-T. Lu

Optical Dipole Trap Fiber laser: = 1550 nm, Power = 40 Watts Focused to 100  m  trap depth 400  K EDM in an optical dipole trap – Fortson & Romalis (1999) v x E, Berry’s phase effects suppressed Cold scattering suppressed between cold Fermionic atoms Rayleigh scat. rate ~ s -1 ; Raman scat. rate ~ s -1 Vector light shift ~  Hz Parity mixing induced shift negligible Conclusion: possible to reach e cm for 199 Hg

Trap Lifetimes Magneto-Optical Trap (MOT) in the first trap chamber Optical Dipole Trap (ODT) in the EDM chamber Sideview Head-on view ODT 0.04 mm MOT & ODT

Systematics Systematic effects much smaller than Statistical error for now No corrections needed Systematic Effect Δd Ra-225 (e-cm) Imperfect E-field reversal1 × Blue laser frequency correlations< External B-field correlations Current supply correlations E-field pulsing 1D MOT Coil Magnetization Leakage current Optical lattice power correlations E x v effects Stark interference Berry’s phase

E 2 Systematic 3 mCi Run (October)6 mCi Run (December) d E-squared syst ≤ 0.2× e-cmd E-squared syst ≤ 0.05× e-cm

ActualNear Term Goal N: # atoms detected E: Effective E-field (kV/cm)4575 : Precession Time (s)220 T d : Dead time (s)4848 T: Total time (s)2 × 86,400 5 × 86,400 γ atom : Photons per atom2.51,000 γ laser : Photons per laser pulse10 6 4×10 8 EDM sens. (e-cm)3× × What the stat. sensitivity of our experiment could be!

T. Chupp and M. Ramsey-Musolf, arXiv Why a more sensitive radium EDM measurement is important to science

Preparation of Cold Radium Atoms for EDM 2006 – Atomic transitions identified and studied; 2007 – Magneto-optical trap (MOT) of radium realized; 2010 – Optical dipole trap (ODT) of radium realized; 2011 – Atoms transferred to the measurement trap; 2012 – Spin precession of Ra-225 in ODT observed; 2014 – First measurement of EDM of Ra-225. J.R. Guest et al., PRL 98, (2007) R.H. Parker et al., PRC 86, (2012) N.D. Scielzo et al., PRA Rapid 73, (2006) R.H. Parker et al., submitted

EDM (d) Measurement