Cédric Lorcé SLAC & IFPA Liège Transversity and orbital angular momentum January 23, 2015, JLab, Newport News, USA.

Slides:



Advertisements
Similar presentations
December 17, 2004 JLab Hall A Upgrade 1 Semi-Inclusive DIS --opportunities at JLab upgrade Feng Yuan RBRC, Brookhaven National Laboratory.
Advertisements

Parton distribution functions and quark orbital motion Petr Závada Institute of Physics, Prague The 6 th Circum-Pan-Pacific Symposium on High Energy Spin.
Cédric Lorcé IPN Orsay - LPT Orsay Observability of the different proton spin decompositions June , University of Glasgow, UK CLAS12 3rd European.
Cédric Lorcé IFPA Liège ECT* Colloquium: Introduction to quark and gluon angular momentum August 25, 2014, ECT*, Trento, Italy Spin and Orbital Angular.
Remarks on angular momentum Piet Mulders Trieste, November 2006
Cédric Lorcé SLAC & IFPA Liège How to define and access quark and gluon contributions to the proton spin December 2, 2014, IIT Bombay, Bombay, India INTERNATIONAL.
Unharmony within the Thematic Melodies of Twentieth Century Physics X.S.Chen, X.F.Lu Dept. of Phys., Sichuan Univ. W.M.Sun, Fan Wang NJU and PMO Joint.
Nucleon Spin Structure and Gauge Invariance X.S.Chen, X.F.Lu Dept. of Phys., Sichuan Univ. W.M.Sun, Fan Wang Dept. of Phys. Nanjing Univ.
States, operators and matrices Starting with the most basic form of the Schrödinger equation, and the wave function (  ): The state of a quantum mechanical.
Light-front densities for transversely polarized hadrons Lorcé Cédric Mainz University Germany *4th Workshop on ERHMT, JLAb, Newport News, Virginia USA.
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
Review on Nucleon Spin Structure X.S.Chen, Dept. of Phys., Sichuan Univ. T.Goldman, TD, LANL X.F.Lu, Dept. of Phys., Sichuan Univ. D.Qing, CERN Fan Wang,
Xiangdong Ji University of Maryland/SJTU
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Cédric Lorcé IPN Orsay - LPT Orsay Orbital Angular Momentum in QCD June , Dipartimento di Fisica, Universita’ di Pavia, Italy.
Problems in nucleon structure study Fan Wang CPNPC (Joint Center for Particle Nuclear Physics and Cosmology, Nanjing Univ. and Purple mountain observatory.
Generalized Transverse- Momentum Distributions Cédric Lorcé Mainz University Germany Barbara Pasquini Pavia University Italy In collaboration with:
generates 3-dimensional rotations
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.

Problems in nucleon structure study Fan Wang CPNPC (Joint Center for Particle Nuclear Physics and Cosmology, Nanjing Univ. and Purple mountain observatory.
FermiGasy. W. Udo Schröder, 2005 Angular Momentum Coupling 2 Addition of Angular Momenta    
Chiral-even and odd faces of transverse Sum Rule Trieste(+Dubna), November Oleg Teryaev JINR, Dubna.
Cédric Lorcé IFPA Liège Multidimensional pictures of the nucleon (3/3) June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France Second International.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
Strangeness and Spin in Fundamental Physics Mauro Anselmino: The transverse spin structure of the nucleon Delia Hasch: The transverse spin structure of.
Wigner Distributions and light-front quark models Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Feng Yuan Xiaonu Xiong IPN.
Generalized TMDs of the Proton Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Mainz U. & INFN, Pavia.
大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)
The relativistic hydrogen-like atom : a theoretical laboratory for structure functions  Xavier Artru, Institut de Physique Nucléaire de Lyon, France Transversity.
0 Simonetta Liuti University of Virginia Structure of Nucleons and Nuclei Workshop Como, June 10 th- 14 th, 2013 N&N-StructureSimonetta Liuti Generalized.
EIC, Nucleon Spin Structure, Lattice QCD Xiangdong Ji University of Maryland.

Cédric Lorcé IPN Orsay - LPT Orsay Introduction to the GTMDs and the Wigner distributions June , Palace Hotel, Como, Italy.
Wigner distributions and quark orbital angular momentum Cédric Lorcé and May , JLab, Newport News, VA, USA.
OAM in transverse densities and resonances Cédric Lorcé and 09 Feb 2012, INT, Seattle, USA INT Workshop INT-12-49W Orbital Angular Momentum in QCD February.
Single spin asymmetries in pp scattering Piet Mulders Trento July 2-6, 2006 _.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
Proton spin structure and intrinsic motion of constituents Petr Závada Inst. of Physics, Prague.
GPD and underlying spin structure of the Nucleon M. Wakamatsu and H. Tsujimoto (Osaka Univ.) 1. Introduction Still unsolved fundamental puzzle in hadron.
Nucleon spin structure and Gauge invariance, Canonical quantization X.S.Chen, Dept. of Phys., Sichuan Univ. X.F.Lu, Dept. of Phys., Sichuan Univ. W.M.Sun,
Transverse-Momentum Distributions and spherical symmetry Cédric Lorcé Mainz University Germany in collaboration with Barbara Pasquini Pavia University.
Relation between TMDs and PDFs in the covariant parton model approach Relation between TMDs and PDFs in the covariant parton model approach Petr Zavada.
Nucleon spin decomposition at twist-three Yoshitaka Hatta (Yukawa inst., Kyoto U.) TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Proton spin structure in phase-space May 17, FSU Alumni Center, Tallahassee, Florida, USA Cédric Lorcé CPhT Baryons May 2016 Florida State University.
Xiangdong Ji U. Maryland/ 上海交通大学 Recent progress in understanding the spin structure of the nucleon RIKEN, July 29, 2013 PHENIX Workshop on Physics Prospects.
Gluon orbital angular momentum in the nucleon
Nucleon spin decomposition
Sep 21st 2015, INFN Frascati National Laboratories, Frascati, Italy
June 28, Temple University, Philadelphia, USA
June , Dipartimento di Fisica, Universita’ di Pavia, Italy
May , JLab, Newport News, VA, USA
Theory : phenomenology support 12 GeV
Handout 9 : The Weak Interaction and V-A
Structure and Dynamics of the Nucleon Spin on the Light-Cone
3/19/20181 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
Handout 5 : Electron-Proton Elastic Scattering
Handout 5 : Electron-Proton Elastic Scattering
Strangeness and Spin in Fundamental Physics
Quark’s angular momentum densities in position space
September 29th, IPNO, Orsay
Can We Learn Quark Orbital Motion from SSAs?
Transversity Distributions and Tensor Charges of the Nucleon
light-cone (LC) variables
New Results on 0 Production at HERMES
Handout 4 : Electron-Positron Annihilation
16. Angular Momentum Angular Momentum Operator
Single spin asymmetries in semi-inclusive DIS
New results on SIDIS SSA from JLab
Institute of Modern Physics Chinese Academy of Sciences
Presentation transcript:

Cédric Lorcé SLAC & IFPA Liège Transversity and orbital angular momentum January 23, 2015, JLab, Newport News, USA

Outline Angular momentum and Relativity Longitudinal and transverse polarizations Transversity and orbital angular momentum

Back to basics Two crucial commutators RelativisticNon-relativistic Spin orientation and relativistic center-of-mass are frame dependent Wigner rotation Special relativity introduces intricate spin-orbit coupling !

Back to basics Single particle at rest Total angular Spin is well-defined and unique Only upper component matters

Back to basics Single particle in motion Total angular « Spin » is ambiguous and not unique p-waves are involved Even for a plane-wave !

Spin vs. Polarization I will always refer to « spin » as Dirac spin Dirac states are eigenstates of momentum and polarization operators but not of spin operator Pauli-Lubanski four-vector Polarization four-vector

Spin vs. Polarization Polarization along z Total angular momentum is conserved

Spin vs. Polarization Standard Lorentz transformation defines polarization basis in any frame Conventional ! Generic Lorentz transformation generates a Wigner rotation of polarization Changing standard Lorentz transformation results in a Melosh rotation [Polyzou et al. (2012)]

Popular polarization choices « Canonical spin » Advantage : rotations are simple [Polyzou et al. (2012)] is a rotationless pure boost « Light-front helicity »is made of LF boosts Advantage : LF boosts are simple Polarization four-vector

Longitudinal vs. Transverse Longitudinal polarizationHelicity ! Reminder Aka longitudinal spin Transverse polarization Transversity !

Helicity vs. Transversity Chiral odd HelicityTransversity Charge odd Chiral even Charge even

Many-body system Axial and tensor charges Target rest frame quark rest frame OAM encoded in both WF and spinors

Instant-form and LF wave functions 3Q model of the nucleon Generalized Melosh rotation Transfers OAM from spinor to WF In many quark models pure s-waves-, p- and d-waves Spherical symmetry ! Not independent ! No gluons, no sea ! Quasi-independent particles in a spherically symmetric potential

Spherical symmetry in quark models OAM is a pure effect of Generalized Melosh rotation TMD relations [Avakian et al. (2010)] [C.L., Pasquini (2011)] [Müller, Hwang (2014)] [Burkardt (2007)] [Efremov et al. (2008,2010)] [She, Zhu, Ma (2009)] [Avakian et al. (2010)] [C.L., Pasquini (2012)] [Ma, Schmidt (1998)] Naive canonical OAM (Jaffe-Manohar)

Transverse spin sum rules BLT sum rule [Bakker et al. (2004)] Ambiguous matrix elements Not related to known distributions [Leader, C.L. (2014)] Ji-Leader sum rule [Leader (2012)][Ji (1997)] [Ji et al. (2012)] [Leader (2013)] [Harindranath et al. (2013)] Transverse Pauli-Lubanski sum rule

Spin-orbit correlations Transverse AM and transversely polarized quark [Burkardt (2006)] [C.L. (2014)] Longitudinal OAM and longitudinally polarized quark

Summary Distinction between « spin » and « polarization » is important Helicity and transversity contain complementary information about boosts Transversity appears in several sum rules but has no model-independent relation with OAM