FT_CHADBOURNE_3D
Nomenclature AI Ft/S*Gm/C3 Acoustic Impedance BRIT - Brittleness (Function of Young’s Modulus and PR) BVW V/VBulk Volume Water (PHIE * SWE) DIFFND V/V Difference NPHI and DPHI DLRMR GPA*Gm/C3Difference LambdaRHO – MuRHO DPHI V/VDensity Porosity DTC US/FCompressional Interval Travel Time EI** Ft/S*Gm/C3Elastic Impedance at ** Degrees ERHO GPA*Gm/C3Young’s Modulus * RHOB (Older slides used RHOYM instead of ERHO) LAMBDA GPAIncompressibility (Lame’) LAMDA_RHO GPA*Gm/C3Incompressibility attributes MU GPARigidity (shear modulus) MURHO GPA*Gm/C3Rigidity attributes NPHIV/VNeutron Porosity PE* Barns/ElectronPhoto Electric Effect PHIE V/VEffective Porosity PHIT V/VTotal Porosity PR-Poisson’s Ratio RATIOND -Ratio of NPHI to DPHI RHOB Gm/C3Bulk Density RLM -Ratio of incompressibility to rigidity SI Ft/S*GmC3Shear Impedance SWE V/VEffective Water Saturation (Shaly-Sand model) SWT V/VTotal Water Saturation (Shaly-Sand model) U_MAA Barns/C3Apparent Matrix Volumetric Cross Section VELC Ft/SCompressional velocity VELS Ft/SShear velocity VOL_** V/VVolumes of various minerals (from MultiMin models) VPVS -Ratio of VELC and VELS YOUNG_MOD6PsiDynamic Young’s Modulus
Lame’ Constants Lambda Rho Mu Rho Gas Sand Wet Sand Shale Cemented Sand Carbonates Infers Incompressibility (Fluid) Infers Rigidity (Lithology) (Lithology) LMR analysis
Lame’ Constants Lambda – Mu Difference Lambda/Mu Porous Gas Sands Wet Sands Carbonates LMR analysis Sandstone Line Shales
REFERENCES Passey, Q.R., S. Creaney, J.B. Kulla, F.J. Moretti, and J.D. Stroud, 1990, A practical model for organic richness from porosity and resistivity logs: AAPG Bulletin, v. 74, p Krief, M., Garat, J., Stellingwerff, J. and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic): The Log Analyst, The Magic of Lamé, Bill Goodway, SEG 2009 Lecture Rick Rickman, Mike Mullen, etal. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale: SPE
Well Location
FCOLU_01_86
FCOLU_01_86: PR vs AI
FCOLU_01_86: Lambda_Rho vs Mu_Rho
FCOLU_01_86: DLRMR vs RLM
FCOLU_01_86: PR vs ERHO
FCOLU_08_30
FCOLU_08_30: PR vs AI
FCOLU_08_30: Lambda_Rho vs Mu_Rho
FCOLU_08_30: DLRMR vs RLM
FCOLU_08_30: PR vs ERHO
FCOLU_A_107
FCOLU_A_107: PR vs AI
FCOLU_A_107: Lambda_Rho vs Mu_Rho
FCOLU_A_107: DLRMR vs RLM
FCOLU_A_107: PR vs ERHO
FCOLU_A_110
FCOLU_A_110: PR vs AI
FCOLU_A_110: Lambda_Rho vs Mu_Rho
FCOLU_A_110: DLRMR vs RLM
FCOLU_A_110: PR vs ERHO
FCOLU_51_32
FCOLU_51_32: PR vs AI
FCOLU_51_32: Lambda_Rho vs Mu_Rho
FCOLU_51_32: DLRMR vs RLM
FCOLU_51_32: PR vs ERHO
FCOLU_08_27
FCOLU_08_27: PR vs AI
FCOLU_08_27: Lambda_Rho vs Mu_Rho
FCOLU_08_27: DLRMR vs RLM
FCOLU_08_27: PR vs ERHO
FCOLU_08_31
FCOLU_08_31: PR vs AI
FCOLU_08_31: Lambda_Rho vs Mu_Rho
FCOLU_08_31: DLRMR vs RLM
FCOLU_08_31: PR vs ERHO
FCOLU_26_18
FCOLU_26_18: PR vs AI
FCOLU_26_18: Lambda_Rho vs Mu_Rho
FCOLU_26_18: DLRMR vs RLM
FCOLU_26_18: PR vs ERHO