Introduction to Management Science

Slides:



Advertisements
Similar presentations
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Operations Management - 5 th Edition Chapter 13 Supplement Roberta.
Advertisements

Linear Programming Problem
Pertemuan 2 – Menyelesaikan Formulasi Model Dengan Metode Grafik Riset Operasiomal- dewiyani 1.
Solving Linear Programming Models. Topics Computer Solution Sensitivity Analysis.
Linear Programming.
Linear Programming Problem
CCMIII U2D4 Warmup This graph of a linear programming model consists of polygon ABCD and its interior. Under these constraints, at which point does the.
2-1 Linear Programming: Model Formulation and Graphical Solution Chapter 2 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Chapter 2 Linear Programming Models: Graphical and Computer Methods © 2007 Pearson Education.
Introduction to Management Science
19 Linear Programming CHAPTER
Introduction to Management Science
Modeling with Linear Programming and Graphical Solution
2-1 Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions.
Introduction to Management Science
Linear Programming Solution Techniques: Graphical and Computer Methods
BUS 2420 Management Science
An Introduction to Linear Programming : Graphical and Computer Methods
Introduction to Management Science
6s-1Linear Programming CHAPTER 6s Linear Programming.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved by Prentice-Hall, Inc1  Model.
Introduction to Management Science
Linear Programming OPIM 310-Lecture 2 Instructor: Jose Cruz.
Introduction to Management Science
Linear Programming: Model Formulation and Graphical Solution
LINEAR PROGRAMMING SOLUTION TECHNIQUES: GRAPHICAL AND COMPUTER METHODS
Operations Management - 5 th Edition Chapter 13 Supplement Roberta Russell & Bernard W. Taylor, III Linear Programming.
FORMULATION AND GRAPHIC METHOD
Linear programming. Linear programming… …is a quantitative management tool to obtain optimal solutions to problems that involve restrictions and limitations.
Part I: Linear Programming Model Formulation and Graphical Solution
Linear Programming Models: Graphical and Computer Methods
1-1 Introduction to Optimization and Linear Programming Chapter 1.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
Linear Programming Chapter 14 Supplement. Lecture Outline Model Formulation Graphical Solution Method Linear Programming Model Solution Solving Linear.
3.4 Linear Programming.
Department of Business Administration
Linear Programming Chapter 13 Supplement.
Introduction to Management Science
Mathematical Programming Cht. 2, 3, 4, 5, 9, 10.
Chapter Topics Computer Solution Sensitivity Analysis
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 6S Linear Programming.
2-1 Linear Programming: Model Formulation and Graphical Solution Chapter 2 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
1 Linear Programming: Model Formulation and Graphical Solution.
Chapter 9 - Multicriteria Decision Making 1 Chapter 9 Multicriteria Decision Making Introduction to Management Science 8th Edition by Bernard W. Taylor.
Management Science – MNG221 Linear Programming: Graphical Solution.
Introduction to Linear Programming BSAD 141 Dave Novak.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 6S Linear Programming.
Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization Problem n Graphical Solution Procedure.
Linear Programming Models: Graphical and Computer Methods
Chapter 2 Linear Programming Models: Graphical and Computer Methods
BUAD306 Chapter 19 – Linear Programming. Optimization QUESTION: Have you ever been limited to what you can get done because you don’t have enough ________?
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Supplement S9 Linear Programming.
Introduction to Quantitative Business Methods (Do I REALLY Have to Know This Stuff?)
2-1 Modeling with Linear Programming Chapter Optimal Solution for New Objective Function Graphical Solution of Maximization Model (12 of 12) Maximize.
Operations Research By: Saeed Yaghoubi 1 Graphical Analysis 2.
6s-1Linear Programming William J. Stevenson Operations Management 8 th edition.
Linear Programming Models: Graphical and Computer Methods 7 To accompany Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna.
Chapter 3: Sensitivity Analysis and the Dual Problem & Shadow Prices
Beni Asllani University of Tennessee at Chattanooga
LINEAR PROGRAMMING SOLUTION TECHNIQUES: GRAPHICAL AND COMPUTER METHODS
Chapter 2 Linear Programming Models: Graphical and Computer Methods
Beni Asllani University of Tennessee at Chattanooga
OPERATIONS MANAGEMENT: Creating Value Along the Supply Chain,
Operations Research Chapter one.
Chapter 2 An Introduction to Linear Programming
Goal programming.
Beni Asllani University of Tennessee at Chattanooga
Introduction to Linear Programming
Linear Programming: Model Formulation and Graphic Solution
Presentation transcript:

Introduction to Management Science 8th Edition by Bernard W. Taylor III Chapter 2 Linear Programming: Model Formulation and Graphical Solution Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Chapter Topics Overview of Linear Programming Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization Model Example Special Cases of Linear Programming Models Characteristics of Linear Programming Problems Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Linear Programming An Overview Objectives of business firms frequently include maximizing profit or minimizing costs. Linear programming is an analysis technique in which linear algebraic relationships represent a firm’s decisions given a business objective and resource constraints. Steps in application: Identify problem as solvable by linear programming. Formulate a mathematical model of the unstructured problem. Solve the model. Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Model Components and Formulation Decision variables - mathematical symbols representing controllable inputs. Objective function - a linear mathematical relationship describing an goal of the firm, in terms of decision variables, that is maximized or minimized Constraints - restrictions placed on the firm by the operating environment stated in linear relationships of the decision variables. Parameters - numerical coefficients and constants used in the objective function and constraint equations. Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Characteristics of Linear Programming Problems A linear programming problem requires a decision - a choice amongst alternative courses of action. The decision is represented in the model by decision variables. The problem encompasses a goal, expressed as an objective function, that the decision maker wants to achieve. Constraints exist that limit the extent of achievement of the objective. The objective and constraints must be definable by linear mathematical functional relationships. Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Mathematical Model Summary Max: Z = p1x1 + p2x2 s.t. a1x1 + a2x2 < b x1 > m x2 < u x1 , x2 > 0 Constraints Objective Function “Subject to” Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Properties of Linear Programming Models Proportionality - The rate of change (slope) of the objective function and constraint equations is constant. Additivity - Terms in the objective function and constraint equations must be additive. Divisability -Decision variables can take on any fractional value and are therefore continuous as opposed to integer in nature. Certainty - Values of all the model parameters are assumed to be known with certainty (non-probabilistic). Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

A Maximization Model Example (1 of 3) Problem Definition A Maximization Model Example (1 of 3) Product mix problem - Beaver Creek Pottery Company How many bowls and mugs should be produced to maximize profits given labor and materials constraints? Product resource requirements and unit profit: Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

A Maximization Model Example (2 of 3) Problem Definition A Maximization Model Example (2 of 3) Resource 40 hrs of labor per day Availability: 120 lbs of clay Decision x1 = number of bowls to produce per day Variables: x2 = number of mugs to produce per day Objective Z = profit per day Function: Maximize Z = $40x1 + $50x2 Resource 1x1 + 2x2  40 hours of labor Constraints: 4x1 + 3x2  120 pounds of clay Non-Negativity x1  0; x2  0 Constraints: Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

A Maximization Model Example (3 of 3) Problem Definition A Maximization Model Example (3 of 3) Complete Linear Programming Model: Maximize Z = $40x1 + $50x2 subject to: 1x1 + 2x2  40 4x1 + 3x2  120 x1, x2  0 Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Feasible Solutions A feasible solution does not violate any of the constraints: Example x1 = 5 bowls x2 = 10 mugs Z = $40x1 + $50x2 = $700 Labor constraint check: 1(5) + 2(10) = 25 < 40 hours, within constraint Clay constraint check: 4(5) + 3(10) = 70 < 120 pounds, within constraint Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Infeasible Solutions An infeasible solution violates at least one of the constraints: Example x1 = 10 bowls x2 = 20 mugs Z = $1400 Labor constraint check: 1(10) + 2(20) = 50 > 40 hours, violates constraint Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Graphical Solution of Linear Programming Models Graphical solution is limited to linear programming models containing only two decision variables (can be used with three variables but only with great difficulty). Graphical methods provide visualization of how a solution for a linear programming problem is obtained. Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Feasible Solution Area Graphical Solution of Maximization Model (6 of 12) Maximize Z = $40x1 + $50x2 subject to: 1x1 + 2x2  40 4x1 + 3x2  120 x1, x2  0 Figure 2.6 Feasible Solution Area Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Alternative Objective Function Lines Alternative Objective Function Solution Lines Graphical Solution of Maximization Model (8 of 12) Maximize Z = $40x1 + $50x2 subject to: 1x1 + 2x2  40 4x1 + 3x2  120 x1, x2  0 Figure 2.8 Alternative Objective Function Lines Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Optimal Solution Coordinates Graphical Solution of Maximization Model (10 of 12) Maximize Z = $40x1 + $50x2 subject to: 1x1 + 2x2  40 4x1 + 3x2  120 x1, x2  0 Figure 2.10 Optimal Solution Coordinates Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Solution at All Corner Points Corner Point Solutions Graphical Solution of Maximization Model (11 of 12) Maximize Z = $40x1 + $50x2 subject to: 1x1 + 2x2  40 4x1 + 3x2  120 x1, x2  0 Figure 2.11 Solution at All Corner Points Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Optimal Solution with Z = 70x1 + 20x2 Optimal Solution for New Objective Function Graphical Solution of Maximization Model (12 of 12) Maximize Z = $70x1 + $20x2 subject to: 1x1 + 2x2  40 4x1 + 3x2  120 x1, x2  0 Figure 2.12 Optimal Solution with Z = 70x1 + 20x2 Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Slack Variables Standard form requires that all constraints be in the form of equations. A slack variable is added to a  constraint to convert it to an equation (=). A slack variable represents unused resources. A slack variable contributes nothing to the objective function value. Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Solution Points A, B, and C with Slack Linear Programming Model Standard Form Max Z = 40x1+ 50x2+0s1+ 0s2 subject to:1x1 + 2x2 + s1 = 40 4x1 + 3x2 + s2 = 120 x1, x2, s1, s2  0 Where: x1 = number of bowls x2 = number of mugs s1, s2 are slack variables Figure 2.13 Solution Points A, B, and C with Slack Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

A Minimization Model Example (1 of 7) Problem Definition A Minimization Model Example (1 of 7) Two brands of fertilizer available - Super-Gro, Crop-Quick. Field requires at least 16 pounds of nitrogen and 24 pounds of phosphate. Super-Gro costs $6 per bag, Crop-Quick $3 per bag. Problem: How much of each brand to purchase to minimize total cost of fertilizer given following data ? Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

A Minimization Model Example (2 of 7) Problem Definition A Minimization Model Example (2 of 7) Decision Variables: x1 = bags of Super-Gro x2 = bags of Crop-Quick The Objective Function: Minimize Z = $6x1 + 3x2 Where: $6x1 = cost of bags of Super-Gro $3x2 = cost of bags of Crop-Quick Model Constraints: 2x1 + 4x2  16 lb (nitrogen constraint) 4x1 + 3x2  24 lb (phosphate constraint) x1, x2  0 (non-negativity constraint) Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Graph of Both Model Constraints Model Formulation and Constraint Graph A Minimization Model Example (3 of 7) Minimize Z = $6x1 + $3x2 subject to: 2x1 + 4x2  16 4x1 + 3x2  24 x1, x2  0 Figure 2.14 Graph of Both Model Constraints Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Optimum Solution Point Optimal Solution Point A Minimization Model Example (5 of 7) Minimize Z = $6x1 + $3x2 subject to: 2x1 + 4x2  16 4x1 + 3x2  24 x1, x2  0 Figure 2.16 Optimum Solution Point Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

A Minimization Model Example (6 of 7) Surplus Variables A Minimization Model Example (6 of 7) A surplus variable is subtracted from a  constraint to convert it to an equation (=). A surplus variable represents an excess above a constraint requirement level. Surplus variables contribute nothing to the calculated value of the objective function. Subtracting slack variables in the farmer problem constraints: 2x1 + 4x2 - s1 = 16 (nitrogen) 4x1 + 3x2 - s2 = 24 (phosphate) Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Graph of Fertilizer Example Graphical Solutions A Minimization Model Example (7 of 7) Minimize Z = $6x1 + $3x2 + 0s1 + 0s2 subject to: 2x1 + 4x2 – s1 = 16 4x2 + 3x2 – s2 = 24 x1, x2, s1, s2  0 Figure 2.17 Graph of Fertilizer Example Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Special Cases of Linear Programming Problems For some linear programming models, the general rules do not apply. Special types of problems include those with: Multiple optimal solutions Infeasible solutions Unbounded solutions Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Example with Multiple Optimal Solutions Beaver Creek Pottery Example Objective function is parallel to a constraint line. Maximize Z=$40x1 + 30x2 subject to: 1x1 + 2x2  40 4x2 + 3x2  120 x1, x2  0 Where: x1 = number of bowls x2 = number of mugs Figure 2.18 Example with Multiple Optimal Solutions Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Graph of an Infeasible Problem Every possible solution violates at least one constraint: Maximize Z = 5x1 + 3x2 subject to: 4x1 + 2x2  8 x1  4 x2  6 x1, x2  0 Figure 2.19 Graph of an Infeasible Problem Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Graph of an Unbounded Problem Value of objective function increases indefinitely: Maximize Z = 4x1 + 2x2 subject to: x1  4 x2  2 x1, x2  0 Figure 2.20 Graph of an Unbounded Problem Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Example Problem No. 1 (1 of 3) Problem Statement Example Problem No. 1 (1 of 3) Hot dog mixture in 1000-pound batches. Two ingredients, chicken ($3/lb) and beef ($5/lb). Recipe requirements: at least 500 pounds of chicken at least 200 pounds of beef Ratio of chicken to beef must be at least 2 to 1. Determine optimal mixture of ingredients that will minimize costs. Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Example Problem No. 1 (2 of 3) Solution Example Problem No. 1 (2 of 3) Step 1: Identify decision variables. x1 = lb of chicken x2 = lb of beef Step 2: Formulate the objective function. Minimize Z = $3x1 + $5x2 where Z = cost per 1,000-lb batch $3x1 = cost of chicken $5x2 = cost of beef Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Example Problem No. 1 (3 of 3) Solution Example Problem No. 1 (3 of 3) Step 3: Establish Model Constraints x1 + x2 = 1,000 lb x1  500 lb of chicken x2  200 lb of beef x1/x2  2/1 or x1 - 2x2  0 x1, x2  0 The Model: Minimize Z = $3x1 + 5x2 subject to: x1 + x2 = 1,000 lb x1  50 x2  200 x1 - 2x2  0 x1,x2  0 Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Example Problem No. 2 (1 of 3) Solve the following model graphically: Maximize Z = 4x1 + 5x2 subject to: x1 + 2x2  10 6x1 + 6x2  36 x1  4 x1, x2  0 Step 1: Plot the constraints as equations Figure 2.21 Constraint Equations Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Example Problem No. 2 (2 of 3) Maximize Z = 4x1 + 5x2 subject to: x1 + 2x2  10 6x1 + 6x2  36 x1  4 x1, x2  0 Step 2: Determine the feasible solution space Figure 2.22 Feasible Solution Space and Extreme Points Chapter 2 - Linear Programming: Model Formulation and Graphical Solution

Optimal Solution Point Example Problem No. 2 (3 of 3) Maximize Z = 4x1 + 5x2 subject to: x1 + 2x2  10 6x1 + 6x2  36 x1  4 x1, x2  0 Step 3 and 4: Determine the solution points and optimal solution Figure 2.22 Optimal Solution Point Chapter 2 - Linear Programming: Model Formulation and Graphical Solution