VORTEX MATTER IN SUPERCONDUCTORS WITH FERROMAGNETIC DOT ARRAYS Margriet J. Van Bael Martin Lange, Victor V. Moshchalkov Laboratorium voor Vaste-Stoffysica.

Slides:



Advertisements
Similar presentations
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Advertisements

M S El Bana 1, 2* and S J Bending 1 1 Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK 2 Department of Physics, Ain Shams University,
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Magnetic Memory: Data Storage and Nanomagnets Magnetic Memory: Data Storage and Nanomagnets Mark Tuominen UMass Kathy Aidala Mount Holyoke College.
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Activation energies and dissipation in biased quantum Hall bilayer systems at. B. Roostaei [1], H. A. Fertig [2,3], K. J. Mullen [1], S. Simon [4] [1]
X-ray Imaging of Magnetic Nanostructures and their Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way……
Vortices in Classical Systems. Vortices in Superconductors  = B  da = n hc e*  e i  wavefunction Superconducting flux quantum e*=2e   = 20.7.
Y. Acremann, Sara Gamble, Mark Burkhardt ( SLAC/Stanford ) Exploring Ultrafast Excitations in Solids with Pulsed e-Beams Joachim Stöhr and Hans Siegmann.
Theory of the Quantum Mirage*
Phase Diagram of a Point Disordered Model Type-II Superconductor Peter Olsson Stephen Teitel Umeå University University of Rochester IVW-10 Mumbai, India.
Activation energies and dissipation in biased quantum Hall bilayer systems at. B. Roostaei [1,2], H. A. Fertig [3,4], K. J. Mullen [2], S. Simon [5] [1]
Spin-Polarised Scanning Tunnelling Microscopy of Thin Film Cr(001)?
Vortex Dynamics in Type II Superconductors Yuri V. Artemov Yuri V. Artemov Ph.D. Student in Physics Brian B. Schwartz Mentor: Brian B. Schwartz Professor.
Logic Gates using Magnetic Dots By: Madhav Rao (Master Student) Advisors: Dr. John C Lusth, Dr. Susan Burkett Department of Computer Engineering and Electrical.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Grazing Incidence X-ray Scattering from Patterned Nanoscale Dot Arrays D.S. Eastwood, D. Atkinson, B.K. Tanner and T.P.A. Hase Nanoscale Science and Technology.
J. R. Kirtley et al., Phys. Rev. Lett. 76 (1996),
A image of the flux line lattice in the magnetic superconductor TmNi2B2C The hexagonal arrangement of magnetic flux lines in pure Nb imaged using neutrons.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Nanofabrication H. Hau Wang Argonne National Laboratory.
Andreas Scholl, 1 Marco Liberati, 2 Hendrik Ohldag, 3 Frithjof Nolting, 4 Joachim Stöhr 3 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
Fabrication and magnetic characterization of embedded permalloy structures T.Tezuka, T.Yamamoto, K. Machida, T. Ishibashi, Y. Morishita, A. Koukitu and.
Jianwei Dong, J. Q. Xie, J. Lu, C. Adelmann, A. Ranjan, S. McKernan
The Story of Giant Magnetoresistance (GMR)
Creative Research Initiatives Seoul National University Center for Near-field Atom-Photon Technology - Near Field Scanning Optical Microscopy - Electrostatic.
Magnetization dynamics
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Nanolithography Lecture 15 G.J. Mankey
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Superconducting vortex avalanches D. Shantsev Åge A. F. Olsen, D. Denisov, V. Yurchenko, Y. M. Galperin, T. H. Johansen AMCS (COMPLEX) group Department.
Spin-wave nanograting coupler Haiming Yu 1,2, Georg Dürr 1, Rupert Huber 1, Michael Bahr 1, Thomas Schwarze 1, Florian Brandl 1, and Dirk Grundler 1 1.
Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,
RF breakdown in multilayer coatings: a possibility to break the Nb monopoly Alex Gurevich National High Magnetic Field Laboratory, Florida State University.
Tunneling Spectroscopy and Vortex Imaging in Boron-doped Diamond
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Vortex avalanches in superconductors: Size distribution and Mechanism Daniel Shantsev Tom Johansen andYuri Galperin AMCS group Department of Physics, University.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Critical state controlled by microscopic flux jumps in superconductors
Sid Nb device fabrication Superconducting Nb thin film evaporation Evaporate pure Nb to GaAs wafer and test its superconductivity (T c ~9.25k ) Tc~2.5K.
Magnetic Force Microscopy
Spin Dynamics in Ferromagnetic Microstructures Paul Crowell, University of Minnesota: DMR We are investigating the excitations of ferromagnetic.
Magnetic field around a straight wire
Past and Future Insights from Neutron Scattering Collin Broholm * Johns Hopkins University and NIST Center for Neutron Research  Virtues and Limitations.
VORTEX PHASES IN PERIODIC PLUS RANDOM PINNING POTENTIAL Walter Pogosov, Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences,
Superconducting Cobaltites Nick Vence. Definition A material which looses its electrical resistivity below a certain temperature (Tc)is said to be superconducting.
EEM. Nanotechnology and Nanoelectronics
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
SUMMARY Magneto-optical studies of a c-oriented epitaxial MgB 2 film show that below 10K the global penetration of vortices is dominated by complex dendritic.
Global and local flux jumps in MgB2 films: Magneto-optical imaging and theory Daniel Shantsev, Yuri Galperin, Alexaner Bobyl, Tom Johansen Physics Department,
Why Make Holes in Superconductors? Saturday Morning Physics December 6, 2003 Dr. Sa-Lin Cheng Bernstein.
Spin Wave Model to study multilayered magnetic materials Sarah McIntyre.
Superconductivity and Superfluidity The Pippard coherence length In 1953 Sir Brian Pippard considered 1. N/S boundaries have positive surface energy 2.
Pinning Effect on Niobium Superconducting Thin Films with Artificial Pinning Centers. Lance Horng, J. C. Wu, B. H. Lin, P. C. Kang, J. C. Wang, and C.
Grid computing simulation of superconducting vortex lattice in superconducting magnetic nanostructures M. Rodríguez-Pascual 1, D. Pérez de Lara 2, E.M.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
G. R. Berdiyorov and F. M. Peeters University of Antwerp, Belgium
STM Conference Talk: Dirk Sander
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Magnetic properties of Materials
Superconductivity Res. T
Efrain J. Ferrer Paramagnetism in Compact Stars
News from Princeton Flatlands!
Magnetic force resonance microscopy
Determining superconducting vortices configurations with stochastic processes in a GPU-based code N. Molero Puerto1, R. Mayo García2 1 URJC 2 CIEMAT.
Coexistence of superconductivity and ferromagnetism in EuFe2(As0. 79P0
Presentation transcript:

VORTEX MATTER IN SUPERCONDUCTORS WITH FERROMAGNETIC DOT ARRAYS Margriet J. Van Bael Martin Lange, Victor V. Moshchalkov Laboratorium voor Vaste-Stoffysica en Magnetisme, K.U.Leuven, Belgium A.N. Grigorenko, Simon J. Bending Department of Physics, University of Bath, United Kingdom 1

Artificial pinning arrays: matching effects Pb(500Å) film with a square antidot lattice Strong enhancement of critical current ‘matching’ effects H1H1  M. Baert et al. PRL 74 (1995), V.V. Moshchalkov et al. PRB 54 (1996), PRB 57 (1998)

MAGNETIC PINNING CENTRES Influence of magnetic moment on pinning efficiency Field-induced superconductivity Influence of magnetic stray field on pinning efficiency Co dots with in-plane magnetization Co/Pt dots with out-of-plane magnetization Hybrid ferromagnetic/superconducting system Array of magnetic dots covered with superconducting film m

Square array of Co dipoles d 0.36 µ m 0.54 µ m 1.5 µ m thickness: 380 Å SiO 2 Co (polycrystalline) Au Preparation: e-beam lithography + molecular beam deposition + Lift-off AFM & H=0, RT Enhance stray field Not magnetized Multi domain Magnetized Single domain M.J. Van Bael et al. PRB 59, (1999)

Triangular array of Co dots Electrical transport measurements H 1 = = 10.6 Oe  3 (1.5  m) 2 0 0 2 H/H 1 = 2 honeycomb lattice only stable for strong pinning (Reichhardt et al. PRB 57, 1998) L. Van Look et al. Physica C 332 (2000) T/T c = Magnetic dots create strong pinning potential Clear matching effects close to T c Better pinning for single domain dots structural + magnetic contributions M.J. Van Bael et al. PRB 59, (1999)

Array of Co dipoles Flux lines pinned at Co dots Single domain -> better pinning ‘Tunable pinning’ multi domain no dots single domain M.J. Van Bael et al. PRB 59 (1999) BUT … WHAT HAPPENS LOCALLY ?? Position of vortex on dipole ?? Superconductor and dipole are not independent Fluxoid quantization

Scanning Hall probe microscopy University of Bath Au STM tip 10  m 2DEG material for better sensitivity (2 µV/G) Active area: 2 µm × 2 µm  0.25 µm × 0.25 µm Spatial resolution < 1 µm Typical sensor-surface distance: ~ nm probe and picture in collaboration with imec

Pb-film on square array of single domain Co dots T = 6K << T c Subtract dipole contribution: Visualization of vortex lattice in magnetic dot array -= [dipoles + flux lines] - dipoles (T > T c ) = flux lines square vortex lattice T = 6K, H = H 1 T = 7.5 K, H = H 1 Ordered vortex patterns at integer and fractional matching fields: H/H 1 = 1/2, 1, 3/2, 2, …

Fluxoid quantization effects: field contrast in zero field SHPM image at H = 0 T c = 7.16 K SN field contrast (G) field profile contrast M.J. Van Bael et al. PRL 86, 155 (2001)  ‘Vortex–antivortex’ pair induced

T > T c vortices T < T c  Attraction and annihilation of negative vortex and positive fluxoid    T > T c + ½H 1 In applied field: position of vortex on dipole ? - ½H 1 Field polarity dependent pinning Confirmed by theoretical model (Milosevic et al. PRB 69 (2004)) M.J. Van Bael et al. PRL 86, 155 (2001) vorticesT < T c + ½H 1

0.4  m 1 m1 m MFM magnetized H> 0 single-domain all up MFM magnetized H< 0 single-domain all down MFM demagnetized single-domain random up - down Array of Co/Pt dots with out-of-plane magnetization AFM Preparation e-beam lithography + molecular beam deposition + lift-off SiO 2 Co/Pt (111) 270 Å

m > 0m < 0 Co/Pt dots as artificial pinning centers strong pinning parallel weak pinning antiparallel M.J. Van Bael et al. PRB 68, (2003)

total current: screening current j s vortex current j v Line energy vortex (~  2 ) stray field outside SC (dot + vortex) magnetic moment in vortex field -m.b z Interaction between vortex and magnetic dot E interaction = E kinetic + E field + E moment Stray field of dot is screened below T c  j s jsjs m jvjv bzbz Attractive interaction when field and moment are parallel Strong on-site pinning vortexdot Repulsive interaction when field and moment are antiparallel Weak interstitial pinning jvjv bzbz Attractive interaction when field and moment are parallel Strong on-site pinning M.J. Van Bael et al. PRB 68, (2003)

T = 6.8 K H = 1.6 Oe >0 T = 6.8 K H = -1.6 Oe <0 Asymmetric pinning in magnetized Co/Pt dot array Dots magnetized in negative direction Vortex-dot interaction: attractive for parallel alignment repulsive for anti-parallel alignment Vortices pinned by dots Vortices between dots M.J. Van Bael et al. PRB 68, (2003)

Schematic sample cross-section Case of larger dots What if the dots induce flux quanta ? larger dots Co/Pd Diameter 0.8 µm Period 1.5 µm

Magnetized state: Critical current Dots magnetized down Pb m < 0 T = 7.10K T = 7.15K T = 7.18K Dots magnetized up Pb m > 0 T = 7.10K T = 7.15K T = 7.18K Pinning is strongly field-polarity dependent Maximum critical current shifted to non-zero field cfr. M.V. Milosevic and F.M. Peeters, PRL 93, (2004)

N S N m = 0 m z < 0 N S m z > 0 N S H-T phase diagram For magnetized dots Phase diagram asymmetric Shift of maximum T c Superconductivity induced by magnetic field (~ 2 mT) m z > 0 m z < 0 m = 0 Magnetoresistivity m = 0 M. Lange et al. PRL 90, (2003) m z < 0 m = 0

Field compensation effects Applied field H = 0 Stray field of dots destroys superconductivity between and below dots ~2  0 per unit cell Applied field H = 2H 1 Between the dots, the stray field compensates the applied field ( 2H 1 = 1.84 mT ) and superconductivity emerges Cond-mat/ M. Lange et al. PRL 90, (2003)

CONCLUSION Artificial pinning arrays Very efficient pinning Induce particular geometry of vortex lattice Magnetic pinning centers Magnetism provides extra parameter Fundamental interaction between pinning center and flux line ? Domain state and stray field important Field polarity dependent pinning Magnetic dots can create vortex-antivortex pairs Field compensation effects and field-induced superconductivity