6-2 The Standard Normal Distribution

Slides:



Advertisements
Similar presentations
Overview The Standard Normal Distribution
Advertisements

Section 5.1 Introduction to Normal Distributions and the Standard Normal Distribution.
Lecture Slides Elementary Statistics Twelfth Edition
Section 6-3 Applications of Normal Distributions.
6-3 Applications of Normal Distributions This section presents methods for working with normal distributions that are not standard. That is, the mean is.
Slide 1 Copyright © 2004 Pearson Education, Inc.  Continuous random variable  Normal distribution Overview Figure 5-1 Formula 5-1 LAPTOP3: f(x) = 
Continuous Random Variables and Probability Distributions
Definitions Uniform Distribution is a probability distribution in which the continuous random variable values are spread evenly over the range of possibilities;
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Chapter 6 Normal Probability Distributions
Slide 1 Copyright © 2004 Pearson Education, Inc..
Discrete and Continuous Random Variables Continuous random variable: A variable whose values are not restricted – The Normal Distribution Discrete.
1. Normal Curve 2. Normally Distributed Outcomes 3. Properties of Normal Curve 4. Standard Normal Curve 5. The Normal Distribution 6. Percentile 7. Probability.
Normal Probability Distributions 1. Section 1 Introduction to Normal Distributions 2.
Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area.
§ 5.2 Normal Distributions: Finding Probabilities.
Slide Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution 6-3 Applications of Normal Distributions 6-4.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Elementary Statistics 11 th Edition Chapter 6.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
1 Normal Random Variables In the class of continuous random variables, we are primarily interested in NORMAL random variables. In the class of continuous.
Standard Normal Distribution
1 Chapter 5. Section 5-1 and 5-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 6. Continuous Random Variables Reminder: Continuous random variable.
Probabilistic & Statistical Techniques Eng. Tamer Eshtawi First Semester Eng. Tamer Eshtawi First Semester
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 6-1 Review and Preview.
Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution 6-3 Applications of Normal Distributions 6-4 Sampling Distributions.
6-2: STANDARD NORMAL AND UNIFORM DISTRIBUTIONS. IMPORTANT CHANGE Last chapter, we dealt with discrete probability distributions. This chapter we will.
Chapter 5 The Normal Curve. In This Presentation  This presentation will introduce The Normal Curve Z scores The use of the Normal Curve table (Appendix.
Chapter Normal Probability Distributions 1 of © 2012 Pearson Education, Inc. All rights reserved. Edited by Tonya Jagoe.
Essential Statistics Chapter 31 The Normal Distributions.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard Normal.
Chapter 6 Normal Probability Distribution Lecture 1 Sections: 6.1 – 6.2.
Modular 11 Ch 7.1 to 7.2 Part I. Ch 7.1 Uniform and Normal Distribution Recall: Discrete random variable probability distribution For a continued random.
The Normal Distribution Chapter 6. Outline 6-1Introduction 6-2Properties of a Normal Distribution 6-3The Standard Normal Distribution 6-4Applications.
IT College Introduction to Computer Statistical Packages Eng. Heba Hamad 2009.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 6 Probability Distributions Section 6.2 Probabilities for Bell-Shaped Distributions.
BPS - 5th Ed. Chapter 31 The Normal Distributions.
Essential Statistics Chapter 31 The Normal Distributions.
1 Chapter 5. Section 5-1 and 5-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Slide Slide 1 Lecture 6&7 CHS 221 Biostatistics Dr. Wajed Hatamleh.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Chapter 6 Normal Probability Distributions 6-1 Overview 6-2.
6-2: STANDARD NORMAL AND UNIFORM DISTRIBUTIONS. IMPORTANT CHANGE Last chapter, we dealt with discrete probability distributions. This chapter we will.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 6 Continuous Random Variables.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
Chapter 6 The Normal Distribution.  The Normal Distribution  The Standard Normal Distribution  Applications of Normal Distributions  Sampling Distributions.
Normal Probability Distributions Chapter 5. § 5.1 Introduction to Normal Distributions and the Standard Distribution.
Section 6-1 Overview. Chapter focus is on: Continuous random variables Normal distributions Overview Figure 6-1 Formula 6-1 f(x) =  2  x-x-  )2)2.
Copyright © 2015, 2012, and 2009 Pearson Education, Inc. 1 Chapter Normal Probability Distributions 5.
Slide 1 Copyright © 2004 Pearson Education, Inc. Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution 6-3 Applications.
Section 5.1 Introduction to Normal Distributions © 2012 Pearson Education, Inc. All rights reserved. 1 of 104.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 6-2 The Standard Normal Distribution.
Chapter Normal Probability Distributions 1 of 25 5  2012 Pearson Education, Inc. All rights reserved.
Introduction to Normal Distributions
THINK ABOUT IT!!!!!!! If a satellite crashes at a random point on earth, what is the probability it will crash on land, if there are 54,225,000 square.
Distributions Chapter 5
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Review and Preview and The Standard Normal Distribution
Chapter 5 Normal Probability Distributions.
The Normal Probability Distribution
Elementary Statistics
The Standard Normal Distribution
Section 6-1 Review and Preview.
Introduction to Normal Distributions
Chapter 5 Normal Probability Distributions.
Chapter 5 Normal Probability Distributions.
Introduction to Normal Distributions
Normal Probability Distribution Lecture 1 Sections: 6.1 – 6.2
Presentation transcript:

6-2 The Standard Normal Distribution This section presents the standard normal distribution which has three properties: Its graph is bell-shaped. Its mean is equal to 0 (μ = 0). Its standard deviation is equal to 1 (σ = 1). Develop the skill to find areas (or probabilities or relative frequencies) corresponding to various regions under the graph of the standard normal distribution. Find z scores that correspond to area under the graph.

Uniform Distribution A continuous random variable has a uniform distribution if its values are spread evenly over the range of probabilities. The graph of a uniform distribution results in a rectangular shape.

Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve must have a vertical height that is 0 or greater. (That is, the curve cannot fall below the x-axis.)

Area and Probability Because the total area under the density curve is equal to 1, there is a correspondence between area and probability.

Using Area to Find Probability Given the uniform distribution illustrated, find the probability that a randomly selected voltage level is greater than 124.5 volts. Shaded area represents voltage levels greater than 124.5 volts.

Standard Normal Distribution The standard normal distribution is a normal probability distribution with μ = 0 and σ = 1. The total area under its density curve is equal to 1.

Finding Probabilities When Given z Scores We can find areas (probabilities) for different regions under a normal model using technology or Table A-2. Technology is strongly recommended.

Methods for Finding Normal Distribution Areas

Methods for Finding Normal Distribution Areas

Table A-2

Using Table A-2 It is designed only for the standard normal distribution, which has a mean of 0 and a standard deviation of 1. It is on two pages, with one page for negative z scores and the other page for positive z scores. Each value in the body of the table is a cumulative area from the left up to a vertical boundary above a specific z score.

Using Table A-2 4. When working with a graph, avoid confusion between z scores and areas. z score: Distance along horizontal scale of the standard normal distribution; refer to the leftmost column and top row of Table A-2. Area: Region under the curve; refer to the values in the body of Table A-2. 5. The part of the z score denoting hundredths is found across the top.

Example – Bone Density Test A bone mineral density test can be helpful in identifying the presence of osteoporosis. The result of the test is commonly measured as a z score, which has a normal distribution with a mean of 0 and a standard deviation of 1. A randomly selected adult undergoes a bone density test. Find the probability that the result is a reading less than 1.27.

Example – continued

Look at Table A-2

Example – continued The probability of random adult having a bone density less than 1.27 is 0.8980.

Example – continued Using the same bone density test, find the probability that a randomly selected person has a result above –1.00 (which is considered to be in the “normal” range of bone density readings. The probability of a randomly selected adult having a bone density above –1 is 0.8413.

Example – continued A bone density reading between –1.00 and –2.50 indicates the subject has osteopenia. Find this probability. 1. The area to the left of z = –2.50 is 0.0062. 2. The area to the left of z = –1.00 is 0.1587. 3. The area between z = –2.50 and z = –1.00 is the difference between the areas found above.

denotes the probability that the z score is greater than a. Notation denotes the probability that the z score is between a and b. denotes the probability that the z score is greater than a. denotes the probability that the z score is less than a.

Finding z Scores from Known Areas 1. Draw a bell-shaped curve and identify the region under the curve that corresponds to the given probability. If that region is not a cumulative region from the left, work instead with a known region that is a cumulative region from the left. 2. Using the cumulative area from the left, locate the closest probability in the body of Table A-2 and identify the corresponding z score.

When Given Probabilities Finding the 95th Percentile Finding z Scores When Given Probabilities 5% or 0.05 (z score will be positive) Finding the 95th Percentile

When Given Probabilities Finding the 95th Percentile Finding z Scores When Given Probabilities 5% or 0.05 (z score will be positive) 1.645 Finding the 95th Percentile

Example – continued Using the same bone density test, find the bone density scores that separates the bottom 2.5% and find the score that separates the top 2.5%.

Definition For the standard normal distribution, a critical value is a z score separating unlikely values from those that are likely to occur. Notation: The expression zα denotes the z score withan area of α to its right.

Example Find the value of z0.025. The notation z0.025 is used to represent the z score with an area of 0.025 to its right. Referring back to the bone density example, z0.025 = 1.96.