1 Algorithmic Paradigms Greed. Build up a solution incrementally, myopically optimizing some local criterion. Divide-and-conquer. Break up a problem into.

Slides:



Advertisements
Similar presentations
Greedy Algorithms.
Advertisements

Analysis of Algorithms
1 Chapter 6 Dynamic Programming Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
Overview What is Dynamic Programming? A Sequence of 4 Steps
Dynamic Programming.
CSCI 256 Data Structures and Algorithm Analysis Lecture 13 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
1 Dynamic Programming Jose Rolim University of Geneva.
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 20.
Dynamic Programming Lecture 9 Asst. Prof. Dr. İlker Kocabaş 1.
DYNAMIC PROGRAMMING. 2 Algorithmic Paradigms Greedy. Build up a solution incrementally, myopically optimizing some local criterion. Divide-and-conquer.
Dynamic Programming Solving Optimization Problems.
UNC Chapel Hill Lin/Manocha/Foskey Optimization Problems In which a set of choices must be made in order to arrive at an optimal (min/max) solution, subject.
Analysis of Algorithms CS 477/677
UNIVERSITY OF SOUTH CAROLINA College of Engineering & Information Technology Bioinformatics Algorithms and Data Structures Chapter 11: Core String Edits.
1 Dynamic Programming Jose Rolim University of Geneva.
1 Theory I Algorithm Design and Analysis (11 - Edit distance and approximate string matching) Prof. Dr. Th. Ottmann.
Dynamic Programming Adapted from Introduction and Algorithms by Kleinberg and Tardos.
Dynamic Programming Introduction to Algorithms Dynamic Programming CSE 680 Prof. Roger Crawfis.
Dynamic Programming. Well known algorithm design techniques:. –Divide-and-conquer algorithms Another strategy for designing algorithms is dynamic programming.
9/10/10 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Adam Smith Algorithm Design and Analysis L ECTURE 13 Dynamic.
ADA: 7. Dynamic Prog.1 Objective o introduce DP, its two hallmarks, and two major programming techniques o look at two examples: the fibonacci.
Fundamentals of Algorithms MCS - 2 Lecture # 7
1 Algorithmic Paradigms Greed. Build up a solution incrementally, myopically optimizing some local criterion. Divide-and-conquer. Break up a problem into.
CSCI 256 Data Structures and Algorithm Analysis Lecture 14 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
COSC 3101A - Design and Analysis of Algorithms 7 Dynamic Programming Assembly-Line Scheduling Matrix-Chain Multiplication Elements of DP Many of these.
Algorithm Paradigms High Level Approach To solving a Class of Problems.
CSC401: Analysis of Algorithms CSC401 – Analysis of Algorithms Chapter Dynamic Programming Objectives: Present the Dynamic Programming paradigm.
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 17.
Prof. Swarat Chaudhuri COMP 482: Design and Analysis of Algorithms Spring 2012 Lecture 17.
Dynamic Programming Louis Siu What is Dynamic Programming (DP)? Not a single algorithm A technique for speeding up algorithms (making use of.
Prof. Swarat Chaudhuri COMP 482: Design and Analysis of Algorithms Spring 2012 Lecture 16.
1 Chapter 6 Dynamic Programming. 2 Algorithmic Paradigms Greedy. Build up a solution incrementally, optimizing some local criterion. Divide-and-conquer.
Lectures on Greedy Algorithms and Dynamic Programming
Topic 25 Dynamic Programming "Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it.
1 Chapter 15-1 : Dynamic Programming I. 2 Divide-and-conquer strategy allows us to solve a big problem by handling only smaller sub-problems Some problems.
1 Chapter 6 Dynamic Programming Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 14.
1 Chapter 6-1 Dynamic Programming Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
Sequence Alignment Tanya Berger-Wolf CS502: Algorithms in Computational Biology January 25, 2011.
Chapter 6 Dynamic Programming
Algorithmics - Lecture 121 LECTURE 11: Dynamic programming - II -
Optimization Problems In which a set of choices must be made in order to arrive at an optimal (min/max) solution, subject to some constraints. (There may.
Computer Sciences Department1.  Property 1: each node can have up to two successor nodes (children)  The predecessor node of a node is called its.
Dynamic Programming.  Decomposes a problem into a series of sub- problems  Builds up correct solutions to larger and larger sub- problems  Examples.
Instructor Neelima Gupta Instructor: Ms. Neelima Gupta.
1 Chapter 6 Dynamic Programming Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 18.
CSCI 256 Data Structures and Algorithm Analysis Lecture 16 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 17.
CS502: Algorithms in Computational Biology
Chapter 6 Dynamic Programming
Algorithm Design and Analysis
Weighted Interval Scheduling
Analysis of Algorithms CS 477/677
CS38 Introduction to Algorithms
Prepared by Chen & Po-Chuan 2016/03/29
Chapter 6 Dynamic Programming
Chapter 6 Dynamic Programming
Chapter 6 Dynamic Programming
Dynamic Programming Longest Path in a DAG, Yin Tat Lee
Chapter 6 Dynamic Programming
Lecture 8. Paradigm #6 Dynamic Programming
Chapter 6 Dynamic Programming
Algorithms CSCI 235, Spring 2019 Lecture 29 Greedy Algorithms
Bioinformatics Algorithms and Data Structures
Dynamic Programming II DP over Intervals
Analysis of Algorithms CS 477/677
Dynamic Programming.
Presentation transcript:

1 Algorithmic Paradigms Greed. Build up a solution incrementally, myopically optimizing some local criterion. Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem. Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

2 Dynamic Programming History Bellman. Pioneered the systematic study of dynamic programming in the 1950s. Etymology. n Dynamic programming = planning over time. n Secretary of Defense was hostile to mathematical research. n Bellman sought an impressive name to avoid confrontation. – "it's impossible to use dynamic in a pejorative sense" – "something not even a Congressman could object to" Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography. Quotation: “Those who cannot remember the past are condemned to repeat it.

3 Dynamic Programming Applications Areas. n Bioinformatics. n Control theory. n Information theory. n Operations research. n Computer science: theory, graphics, AI, systems, …. Some famous dynamic programming algorithms. n Viterbi for hidden Markov models. n Unix diff for comparing two files. n Smith-Waterman for sequence alignment. n Bellman-Ford for shortest path routing in networks. n Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

5 Weighted Interval Scheduling Weighted interval scheduling problem. n Job j starts at s j, finishes at f j, and has weight or value v j. n Two jobs compatible if they don't overlap. n Goal: find maximum weight subset of mutually compatible jobs. Time f g h e a b c d

6 Unweighted Interval Scheduling Review Recall. Greedy algorithm works if all weights are 1. n Consider jobs in ascending order of finish time. n Add job to subset if it is compatible with previously chosen jobs. Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed. Time b a weight = 999 weight = 1

7 Weighted Interval Scheduling Notation. Label jobs by finishing time: f 1  f 2 ...  f n. Def. p(j) = largest index i < j such that job i is compatible with j. Ex: p(8) = 5, p(7) = 3, p(2) = 0. Time

8 Dynamic Programming: Binary Choice Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2,..., j. n Case 1: OPT selects job j. – can't use incompatible jobs { p(j) + 1, p(j) + 2,..., j - 1 } – must include optimal solution to problem consisting of remaining compatible jobs 1, 2,..., p(j) n Case 2: OPT does not select job j. – must include optimal solution to problem consisting of remaining compatible jobs 1, 2,..., j-1 optimal substructure

9 Input: n, s 1,…,s n, f 1,…,f n, v 1,…,v n Sort jobs by finish times so that f 1  f 2 ...  f n. Compute p(1), p(2), …, p(n) Compute-Opt(j) { if (j = 0) return 0 else return max(v j + Compute-Opt(p(j)), Compute-Opt(j-1)) } Weighted Interval Scheduling: Brute Force Brute force algorithm.

10 Weighted Interval Scheduling: Brute Force Observation. Recursive algorithm fails spectacularly because of redundant sub-problems  exponential algorithms. Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence p(1) = 0, p(j) = j

11 Input: n, s 1,…,s n, f 1,…,f n, v 1,…,v n Sort jobs by finish times so that f 1  f 2 ...  f n. Compute p(1), p(2), …, p(n) for j = 1 to n M[j] = empty M[j] = 0 M-Compute-Opt(j) { if (M[j] is empty) M[j] = max(w j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)) return M[j] } global array Weighted Interval Scheduling: Memoization Memoization. Store results of each sub-problem in a cache; lookup as needed.

12 Weighted Interval Scheduling: Running Time Claim. Memoized version of algorithm takes O(n log n) time. n Sort by finish time: O(n log n). n Computing p(  ) : O(n) after sorting by start time. M-Compute-Opt(j) : each invocation takes O(1) time and either – (i) returns an existing value M[j] – (ii) fills in one new entry M[j] and makes two recursive calls Progress measure  = # nonempty entries of M[]. – initially  = 0, throughout   n. – (ii) increases  by 1  at most 2n recursive calls. Overall running time of M-Compute-Opt(n) is O(n). ▪ Remark. O(n) if jobs are pre-sorted by start and finish times.

13 Automated Memoization Automated memoization. Many functional programming languages (e.g., Lisp) have built-in support for memoization. Q. Why not in imperative languages (e.g., Java)? F(40) F(39)F(38) F(37)F(36) F(37) F(36)F(35) F(36) F(35)F(34) F(37) F(36)F(35) static int F(int n) { if (n <= 1) return n; else return F(n-1) + F(n-2); } (defun F (n) (if (<= n 1) n (+ (F (- n 1)) (F (- n 2))))) Lisp (efficient) Java (exponential)

14 Weighted Interval Scheduling: Finding a Solution Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself? A. Do some post-processing. n # of recursive calls  n  O(n). Run M-Compute-Opt(n) Run Find-Solution(n) Find-Solution(j) { if (j = 0) output nothing else if (v j + M[p(j)] > M[j-1]) print j Find-Solution(p(j)) else Find-Solution(j-1) }

15 Weighted Interval Scheduling: Bottom-Up Bottom-up dynamic programming. Unwind recursion. Input: n, s 1,…,s n, f 1,…,f n, v 1,…,v n Sort jobs by finish times so that f 1  f 2 ...  f n. Compute p(1), p(2), …, p(n) Iterative-Compute-Opt { M[0] = 0 for j = 1 to n M[j] = max(v j + M[p(j)], M[j-1]) }

Dynamic Programming 1. Replaces an exponential time algorithm with polynomial time alg. 2. Powerful for designing algorithms for optimization problems. 3. Similar to D&C but solves every sub-problem only once. 1. Avoids re-computing. (Remembers the past)  Elements  Use Tables  Subproblems : Decompose the problem into smaller subproblems.  Main Principle: For the global problem to be solved optimally, each sub-problem should be solved optimally.  Top Down Vs Bottom Up.  Top-Down: Memoization  Bottom-Up : Combine solutions of smaller subproblems to solve large subproblems. 16

6.3 Segmented Least Squares

18 Segmented Least Squares Least squares. n Foundational problem in statistic and numerical analysis. n Given n points in the plane: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). n Find a line y = ax + b that minimizes the sum of the squared error: Solution. Calculus  min error is achieved when x y

19 Segmented Least Squares Segmented least squares. n Points lie roughly on a sequence of several line segments. n Given n points in the plane (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) with n x 1 < x 2 <... < x n, find a sequence of lines that minimizes f(x). Q. What's a reasonable choice for f(x) to balance accuracy and parsimony? x y goodness of fit number of lines

20 Segmented Least Squares Segmented least squares. n Points lie roughly on a sequence of several line segments. n Given n points in the plane (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) with n x 1 < x 2 <... < x n, find a sequence of lines that minimizes: – the sum of the sums of the squared errors E in each segment – the number of lines L n Tradeoff function: E + c L, for some constant c > 0. x y

21 Dynamic Programming: Multiway Choice Notation. n OPT(j) = minimum cost for points p 1, p i+1,..., p j. n e(i, j) = minimum sum of squares for points p i, p i+1,..., p j. To compute OPT(j): n Last segment uses points p i, p i+1,..., p j for some i. n Cost = e(i, j) + c + OPT(i-1).

22 Segmented Least Squares: Algorithm Running time. O(n 3 ). n Bottleneck = computing e(i, j) for O(n 2 ) pairs, O(n) per pair using previous formula. INPUT: n, p 1,…,p N, c Segmented-Least-Squares() { M[0] = 0 for j = 1 to n for i = 1 to j compute the least square error e ij for the segment p i,…, p j for j = 1 to n M[j] = min 1  i  j (e ij + c + M[i-1]) return M[n] } can be improved to O(n 2 ) by pre-computing various statistics

Knapsack Subproblems : n B[n,k] = There exists a subset of (s[1],s[2],…,s[n]) that exactly fills up a knapsack of size k. [It’s a boolean variable] n B[n,k] = B[n-1,k] or B[n-1, k-s[n]] n How many total such subproblems? O(nk)?

Knapsack: Recursive bool B(int n, int k) if( n == 0 && k == 0) return true; if( n == 0 && k > 0) return false; if ( B(n-1,k) || ((k-s[n] >= 0) && B(n-1,k-s[n]))) return true; return false;

Edit Distance Given : Strings s[1..n] and t[1..m] Find fewest number of edits needed to convert s to t where ‘edit’ is : n Deleting a character n Inserting a character n Changing a character a.k.a Levenshtein distance

Edit Distance Applications n Spell Checking n Genomics n Morphing/Vision

Edit Distance Example n algorithm to logarithm? n algorithm n lgorithm (delete) n logorithm (Insert) n logarithm (Replace) – Edit Distance = 3

Edit Distance Subproblems? n What do we want? – Small number of Subproblems (Polynomial?) – Should be able to recover the solution easily from other smaller subproblems. Edit distance d(i,j) = Edit distance between s[1..i] and t[1..j] ? Does it satisfy what we want?

Edit Distance How can we solve the subproblem (i,j) by looking at smaller subproblems? n Solve s[1..i] to t[1..j] using a minimum of d[i,j] operations. n given the edit distances between – s[1..i-1] and t[1..j-1] and … n What if we look at s[i] and t[j]?

Edit Distance Recursion Replace Delete s[i] Insert t[j] If we can transform s[1..i-1] to t[1..j] in k operations, then we can do the same operations on s[1..i] and then remove the original s[i] at the end in k+1 operations. If we can transform s[1..i] to t[1..j-1] in k operations, then we can simply add t[j] afterwards to get t[1..j] in k+1 operations.

Edit Distance Recursion Replace Delete s[i] Insert t[j] If we can transform s[1..i-1] to t[1..j-1] in k operations, we can do the same to s[1..i] and then do a substitution of t[j] for the original s[i] at the end if necessary, requiring k+cost operations.

Base Cases n To turn empty string to t[1..j], do j inserts n To turn s[1..i] to empty string, do i deletes d(i,0) = i; for I = 1.. m (deletes) d(0,j) = j; for j = 1 to n (inserts) Can we fill up d(i,j) using this table and the recursion given? In what order? What is the space requirement? Running time?

Loop Assignment for i = 1 to n for j = 1 to m d(i,j) = min( d(i-1,j) + 1, d(i,j-1) + 1, d(i-1,j-1)+ ((s[i] == t[j])?0:1) );

Kitten Sitting kitten s i t t i n g

6.5 RNA Secondary Structure

37 RNA Secondary Structure RNA. String B = b 1 b 2  b n over alphabet { A, C, G, U }. Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule. G U C A GA A G CG A U G A U U A G A CA A C U G A G U C A U C G G G C C G Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA complementary base pairs: A-U, C-G

38 RNA Secondary Structure Secondary structure. A set of pairs S = { (b i, b j ) } that satisfy: n [Watson-Crick.] S is a matching and each pair in S is a Watson- Crick complement: A-U, U-A, C-G, or G-C. n [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If (b i, b j )  S, then i < j - 4. n [Non-crossing.] If (b i, b j ) and (b k, b l ) are two pairs in S, then we cannot have i < k < j < l. Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy. Goal. Given an RNA molecule B = b 1 b 2  b n, find a secondary structure S that maximizes the number of base pairs. approximate by number of base pairs

39 RNA Secondary Structure: Examples Examples. C GG C A G U U UA A UGUGGCCAU GG C A G U UA A UGGGCAU C GG C A U G U UA A GUUGGCCAU sharp turncrossingok G G 44 base pair

40 RNA Secondary Structure: Subproblems First attempt. OPT(j) = maximum number of base pairs in a secondary structure of the substring b 1 b 2  b j. Difficulty. Results in two sub-problems. n Finding secondary structure in: b 1 b 2  b t-1. n Finding secondary structure in: b t+1 b t+2  b n-1. 1 tn match b t and b n OPT(t-1) need more sub-problems

41 Dynamic Programming Over Intervals Notation. OPT(i, j) = maximum number of base pairs in a secondary structure of the substring b i b i+1  b j. n Case 1. If i  j - 4. – OPT(i, j) = 0 by no-sharp turns condition. n Case 2. Base b j is not involved in a pair. – OPT(i, j) = OPT(i, j-1) n Case 3. Base b j pairs with b t for some i  t < j - 4. – non-crossing constraint decouples resulting sub-problems – OPT(i, j) = 1 + max t { OPT(i, t-1) + OPT(t+1, j-1) } Remark. Same core idea in CKY algorithm to parse context-free grammars. take max over t such that i  t < j-4 and b t and b j are Watson-Crick complements

42 Bottom Up Dynamic Programming Over Intervals Q. What order to solve the sub- problems? A. Do shortest intervals first. Running time. O(n 3 ). RNA(b 1,…,b n ) { for k = 5, 6, …, n-1 for i = 1, 2, …, n-k j = i + k Compute M[i, j] return M[1, n] } using recurrence i 6789 j

43 Dynamic Programming Summary Recipe. n Characterize structure of problem. n Recursively define value of optimal solution. n Compute value of optimal solution. n Construct optimal solution from computed information. Dynamic programming techniques. n Binary choice: weighted interval scheduling. n Multi-way choice: segmented least squares. n Adding a new variable: knapsack. n Dynamic programming over intervals: RNA secondary structure. Top-down vs. bottom-up: different people have different intuitions. Viterbi algorithm for HMM also uses DP to optimize a maximum likelihood tradeoff between parsimony and accuracy CKY parsing algorithm for context-free grammar has similar structure