Algebra1 Independent and Dependent Events

Slides:



Advertisements
Similar presentations
GOAL: IDENTIFY THE DIFFERENCE BETWEEN A DEPENDENT AND AN INDEPENDENT EVENT. Independent and Dependent Events.
Advertisements

Probability of Independent and Dependent Events
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Warm Up Write each answer as a fraction, as a decimal, and as a percent. A 1–6 number cube is rolled. 1. What is the probability that an even number will.
Holt Algebra Independent and Dependent Events 11-3 Independent and Dependent Events Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Independent and Dependent events. Warm Up There are 5 blue, 4 red, 1 yellow and 2 green beads in a bag. Find the probability that a bead chosen at random.
DATA, STATS, AND PROBABILITY Probability. ImpossibleCertainPossible but not certain Probability 0Probability between 0 and 1Probability 1 What are some.
Learning Target: I can… Find the probability of simple events.
Lesson 18b – Do Now Do now Expectations: No talking for any reason, please. 1) A tube of sweets contains 10 red sweets, 7 blue sweets, 8 green sweets and.
Independent and 10-7 Dependent Events Warm Up Lesson Presentation
Bell Work Suppose 10 buttons are placed in a bag (5 gray, 3 white, 2 black). Then one is drawn without looking. Refer to the ten buttons to find the probability.
9-3 Sample Spaces Warm Up 1. A dog catches 8 out of 14 flying disks thrown. What is the experimental probability that it will catch the next one? 2. If.
CONFIDENTIAL 1 Algebra1 Theoretical Probability. CONFIDENTIAL 2 Warm Up 1) choosing a heart. 2) choosing a heart or a diamond. An experiment consists.
Copyright © Ed2Net Learning Inc.1. 2 Warm Up Use the Counting principle to find the total number of outcomes in each situation 1. Choosing a car from.
Chapter 1:Independent and Dependent Events
Topic 4A: Independent and Dependent Events Using the Product Rule
Warm Up Find the theoretical probability of each outcome 1. rolling a 6 on a number cube. 2. rolling an odd number on a number cube. 3. flipping two coins.
Warm Up Find the theoretical probability of each outcome
Bell Quiz.
Chapter 9 Review. 1. Give the probability of each outcome.
Bell Work Determine the total number of outcomes (combinations). 1) You are picking an outfit from the following list of clothes. If you choose one hat,
Probability of Independent and Dependent Events
Warm Up Tyler has a bucket of 30 blocks. There are
EXAMPLE 1 Independent and Dependent Events Tell whether the events are independent or dependent. SOLUTION You randomly draw a number from a bag. Then you.
Note to the Presenter Print the notes of the power point (File – Print – select print notes) to have as you present the slide show. There are detailed.
10-5 Independent and Dependent Events Course 3 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Warm Up Multiply. Write each fraction in simplest form. 1. 2.  Write each fraction as a decimal
PROBABILITY INDEPENDENT & DEPENDENT EVENTS. DEFINITIONS: Events are independent events if the occurrence of one event does not affect the probability.
Warm Up Find the theoretical probability of each outcome
Probability.
Multiplication Rule Statistics B Mr. Evans. Addition vs. Multiplication Rule The addition rule helped us solve problems when we performed one task and.
Examples 1.At City High School, 30% of students have part- time jobs and 25% of students are on the honor roll. What is the probability that a student.
Making Predictions with Theoretical Probability. Warm Up You flip a coin three times. 1.Create a tree diagram to find the sample space. 2.How many outcomes.
Warm Up: Quick Write Which is more likely, flipping exactly 3 heads in 10 coin flips or flipping exactly 4 heads in 5 coin flips ?
Independent and Dependent Events Lesson 6.6. Getting Started… You roll one die and then flip one coin. What is the probability of : P(3, tails) = 2. P(less.
Independent and Dependent events. What is the difference between independent and dependent events?  You have three marbles in a bag. There are two blue.
Unit 4 Probability Day 3: Independent and Dependent events.
Warm Up What is the theoretical probability of rolling a die and landing on a composite number?
Probability of Dependent Events Section 10.3 What key words tell us it is a dependent event?
DO NOW 4/27/2016 Find the theoretical probability of each outcome. 1. rolling a 6 on a number cube. 2. rolling an odd number on a number cube. 3. flipping.
Chapter 22 E. Outcomes of Different Events When the outcome of one event affects the outcome of a second event, we say that the events are dependent.
Warm Up Find the theoretical probability of each outcome
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Please copy your homework into your assignment book
Independent and Dependent Events
Probability of Independent and Dependent Events
Probability of Independent and Dependent Events
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Learn to find the probability of independent and dependent events.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Probability.
Probability Learning Target:
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Lesson 10-7 Independent and Dependent Events
Events are independent events if the occurrence of one event does not affect the probability of the other. If a coin is tossed twice, its landing heads.
Probability of Dependent Events
Warm Up There are 5 blue, 4 red, 1 yellow and 2 green beads in a bag. Find the probability that a bead chosen at random from the bag is: 1. blue 2.
Warm Up There are 5 blue, 4 red, 1 yellow and 2 green beads in a bag. Find the probability that a bead chosen at random from the bag is: 1. blue 2.
Probability of Independent and Dependent Events
Please copy your homework into your assignment book
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Probability of two events
“And” Probabilities.
To find the probability of independent events dependent events
Independent and 10-7 Dependent Events Warm Up Lesson Presentation
Independent and Dependent Events Warm Up Lesson Presentation
Events are independent events if the occurrence of one event does not affect the probability of the other. If a coin is tossed twice, its landing heads.
Bellwork: 5/13/16 Find the theoretical probability of each outcome
Thursday 05/16 Warm Up 200 people were surveyed about ice cream preferences. 78 people said they prefer chocolate. 65 people said they prefer strawberry.
Presentation transcript:

Algebra1 Independent and Dependent Events CONFIDENTIAL

Find the theoretical probability of each outcome. Warm Up Find the theoretical probability of each outcome. 1) Randomly selecting a blue marble out of a bag with 6 red and 9 blue marbles 2) Rolling a number less than 10 on a number cube 3) Randomly selecting A, E, I, O, or U from all letters of the alphabet CONFIDENTIAL

Independent and Dependent Events You may need to understand independent and dependent events to determine the number of reading selections available. Adam’s teacher gives the class two lists of titles and asks each student to choose two of them to read. Adam can choose one title from each list or two titles from the same list. One title from each list Choosing a title from one list does not affect the number of titles to choose from on the other list. The events are independent. CONFIDENTIAL

Two titles from the same list Choosing a title from one of the lists changes the number of titles that can be chosen from the same list. The events are dependent. Events are independent events if the occurrence of one event does not affect the probability of the other. Events are dependent events if the occurrence of one event does affect the probability of the other. CONFIDENTIAL

Classifying Events as Independent or Dependent Tell whether each set of events is independent or dependent. Explain your answer: A dime lands heads up and a nickel lands heads up. The result of tossing a dime does not affect the result of tossing a nickel, so the events are independent. B) You choose a colored game piece in a board game, and then your sister picks another color. Your sister cannot pick the same color you picked, and there are fewer game pieces for your sister to choose from after you choose, so the events are dependent. CONFIDENTIAL

Now you try! Tell whether each set of events is independent or dependent. Explain your answer: 1a) A number cube lands showing an odd number. It is rolled a second time and lands showing 6. 1b) One student in your class is chosen for a project. Then another student in the class is chosen. CONFIDENTIAL

Probability of Independent Events Suppose an experiment involves flipping two fair coins. The sample space of outcomes is shown by the tree diagram. Determine the theoretical probability of both coins landing heads up. 1st Coin 2nd Coin There are four possible outcomes in the sample space: {(H, H) , (H, T) , (T, H) , (T, T)} Only one outcome includes both coins landing heads up. The theoretical probability of both coins landing heads up is 1. 4 H H T H T T CONFIDENTIAL

Probability of Independent Events Now look back at the separate theoretical probabilities of each coin landing heads up. The theoretical probability in each case is 1. 2 The product of these two probabilities is 1, 4 the same probability shown by the tree diagram. If A and B are independent events, then P (A and B) = P (A) · P (B) . CONFIDENTIAL

Finding the Probability of Independent Events A) An experiment consists of randomly selecting a marble from a bag, replacing it, and then selecting another marble. The bag contains 7 blue marbles and 3 yellow marbles. What is the probability of selecting a yellow marble and then a blue marble? Because the first marble is replaced after it is selected, the sample space for each selection is the same. The events are independent. P (yellow, blue) = P (yellow) · P (blue) = 3 x 7 10 10 The probability of selecting yellow is 3 , 10 And the probability of selecting blue is 7. = 21 100 CONFIDENTIAL

B) When a person rolls 2 dice and they land showing the same number, we say the person rolled doubles. What is the probability of rolling doubles 3 times in a row? The result of one roll does not affect any following rolls. The events are independent. When you roll a pair of dice, there are 36 possible outcomes, six of which are doubles: CONFIDENTIAL Next page ->

So, the probability of rolling doubles once is P (double) = 6 = 1 36 6 36 6 P (double, double, double) = P (double) · P (double) · P (double) = 1 x 1 x 1 6 6 6 = 1 216 CONFIDENTIAL

Now you try! 2) An experiment consists of spinning the spinner twice. What is the probability of spinning two odd numbers? CONFIDENTIAL

Finding the Probability of Independent Events Suppose an experiment involves drawing marbles from a bag. Determine the theoretical probability of drawing a blue marble and then drawing a second blue marble without replacing the first one. The sample space for the second draw is not the same as the sample space for the first draw. There are fewer marbles in the bag for the second draw. This means the events are dependent. Probability of drawing a red marble on the first draw = 3 = 1 9 3 Probability of drawing a red marble on the second draw = 2 = 1 8 4 CONFIDENTIAL

Finding the Probability of Independent Events To determine the probability of two dependent events, multiply the probability of the first event times the probability of the second event after the first event has occurred. If A and B are dependent events, then P (A and B) = P (A) · P (B after A) . CONFIDENTIAL

Problem-Solving Application 3) There are 7 pink flowers and 5 yellow flowers in a bunch. Jane selects a flower at random, and then Leah selects a flower at random from the remaining flowers. What is the probability that Jane selects a pink flower and Leah selects a yellow flower? The answer will be the probability that a yellow flower is chosen after a pink flower is chosen. • Jane chooses a pink flower from 7 pink flowers and 5 yellow flowers. • Leah chooses a yellow flower from 6 pink flowers and 5 yellow flowers. Flowers Jane can choose from 7 pink 5 yellow 12 total CONFIDENTIAL

P (pink and yellow) = P (pink) · P(yellow after pink) Flowers Leah can choose from 6 pink 5 yellow 11 total After Jane selects a flower, the sample space changes. So the events are dependent. P (pink and yellow) = P (pink) · P(yellow after pink) = 7 x 5 12 11 Jane selects one of 7 pink flowers from 12 total flowers. Then Leah selects one of 5 yellow flowers from the 11 flowers left. = 35 132 The probability that Jane selects a pink flower and Leah selects a yellow flower is 35. 132 CONFIDENTIAL

Now you try! 3) A bag has 10 red marbles, 12 white marbles, and 8 blue marbles. Two marbles are randomly drawn from the bag. What is the probability of drawing a blue marble and then a red marble? CONFIDENTIAL

Tell whether each set of events is independent or dependent. Assessment Tell whether each set of events is independent or dependent. 1) You draw a heart from a deck of cards and set it aside. Then you draw a club from the deck of cards. 2) You guess “true” on two true-false questions. 3) Your brother calls you on the phone. You hang up the phone, and then your neighbor calls you. 4) You order from a menu, and then your friend orders a different meal. 5) A doctors’ office schedules several patients. Then you make an appointment. CONFIDENTIAL

6) A coin is tossed three times. What is the probability of the coin landing heads up three times? 7) Seven cards are numbered from 1 to 7 and placed in a box. One card is selected at random and replaced. Another card is randomly selected. What is the probability of selecting two odd numbers? 8) Stacey rolls two number cubes. What is the probability that the sum of the numbers on the two number cubes is 7? CONFIDENTIAL

9) A bag contains 4 red marbles, 3 white marbles, and 6 blue marbles 9) A bag contains 4 red marbles, 3 white marbles, and 6 blue marbles. What is the probability of randomly selecting a red marble, setting it aside, and then randomly selecting a white marble from the bag? 10) Seven cards are numbered from 1 to 7 and placed in a box. One card is selected at random and not replaced. Another card is randomly selected. What is the probability of selecting two odd numbers? CONFIDENTIAL

Independent and Dependent Events Let’s review Independent and Dependent Events You may need to understand independent and dependent events to determine the number of reading selections available. Adam’s teacher gives the class two lists of titles and asks each student to choose two of them to read. Adam can choose one title from each list or two titles from the same list. One title from each list Choosing a title from one list does not affect the number of titles to choose from on the other list. The events are independent. CONFIDENTIAL

Two titles from the same list Choosing a title from one of the lists changes the number of titles that can be chosen from the same list. The events are dependent. Events are independent events if the occurrence of one event does not affect the probability of the other. Events are dependent events if the occurrence of one event does affect the probability of the other. CONFIDENTIAL

Classifying Events as Independent or Dependent Tell whether each set of events is independent or dependent. Explain your answer: A dime lands heads up and a nickel lands heads up. The result of tossing a dime does not affect the result of tossing a nickel, so the events are independent. B) You choose a colored game piece in a board game, and then your sister picks another color. Your sister cannot pick the same color you picked, and there are fewer game pieces for your sister to choose from after you choose, so the events are dependent. CONFIDENTIAL

Probability of Independent Events Suppose an experiment involves flipping two fair coins. The sample space of outcomes is shown by the tree diagram. Determine the theoretical probability of both coins landing heads up. 1st Coin 2nd Coin There are four possible outcomes in the sample space: {(H, H) , (H, T) , (T, H) , (T, T)} Only one outcome includes both coins landing heads up. The theoretical probability of both coins landing heads up is 1. 4 H H T H T T CONFIDENTIAL

Probability of Independent Events Now look back at the separate theoretical probabilities of each coin landing heads up. The theoretical probability in each case is 1. 2 The product of these two probabilities is 1, 4 the same probability shown by the tree diagram. If A and B are independent events, then P (A and B) = P (A) · P (B) . CONFIDENTIAL

Finding the Probability of Independent Events A) An experiment consists of randomly selecting a marble from a bag, replacing it, and then selecting another marble. The bag contains 7 blue marbles and 3 yellow marbles. What is the probability of selecting a yellow marble and then a blue marble? Because the first marble is replaced after it is selected, the sample space for each selection is the same. The events are independent. P (yellow, blue) = P (yellow) · P (blue) = 3 x 7 10 10 The probability of selecting yellow is 3 , 10 And the probability of selecting blue is 7. = 21 100 CONFIDENTIAL

Finding the Probability of Independent Events Suppose an experiment involves drawing marbles from a bag. Determine the theoretical probability of drawing a blue marble and then drawing a second blue marble without replacing the first one. The sample space for the second draw is not the same as the sample space for the first draw. There are fewer marbles in the bag for the second draw. This means the events are dependent. Probability of drawing a red marble on the first draw = 3 = 1 9 3 Probability of drawing a red marble on the second draw = 2 = 1 8 4 CONFIDENTIAL

Finding the Probability of Independent Events To determine the probability of two dependent events, multiply the probability of the first event times the probability of the second event after the first event has occurred. If A and B are dependent events, then P (A and B) = P (A) · P (B after A) . CONFIDENTIAL

You did a great job today! CONFIDENTIAL