Chapter 13 Gravitation.

Slides:



Advertisements
Similar presentations
UNIT 6 (end of mechanics) Universal Gravitation & SHM
Advertisements

Chapter 13 Gravitation PhysicsI 2048.
14 The Law of Gravity.
Review Chap. 12 Gravitation
Chapter 12 Gravity DEHS Physics 1.
The Beginning of Modern Astronomy
Chapter 8 Gravity.
Gravitation Newton’s Law of Gravitation Superposition Gravitation Near the Surface of Earth Gravitation Inside the Earth Gravitational Potential Energy.
Scores will be adjusted up by 10%
Chapter 7 Rotational Motion and The Law of Gravity.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
CHAPTER-13 Gravitation.
Semester Physics 1901 (Advanced) A/Prof Geraint F. Lewis Rm 560, A29
Physics 151: Lecture 28 Today’s Agenda
Chapter 13: Gravitation. Newton’s Law of Gravitation A uniform spherical shell shell of matter attracts a particles that is outside the shell as if all.
Physics 151: Lecture 27, Pg 1 Physics 151: Lecture 27 Today’s Agenda l Today’s Topic çGravity çPlanetary motion.
Physics 111: Elementary Mechanics – Lecture 12 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Jw Fundamentals of Physics 1 GRAVITY. jw Fundamentals of Physics 2 Chapter 13: Newton, Einstein, and Gravity Isaac Newton Albert Einstein 1872.
Physics 2113 Lecture 02: WED 27 AUG CH13: Gravitation II Physics 2113 Jonathan Dowling Michael Faraday (1791–1867) Version: 7/2/2015 Isaac Newton (1642–1727)
Physics 111: Mechanics Lecture 13 Dale Gary NJIT Physics Department.
Chapter 13 Gravitation.
Chapter 12 Gravitation. Theories of Gravity Newton’s Einstein’s.
Rotational Motion and The Law of Gravity
Newton’s Theory of Gravity and Planetary Motion
Physics 111: Mechanics Lecture 13
Universal Gravitation
Monday, Nov. 25, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #20 Monday, Nov. 25, 2002 Dr. Jaehoon Yu 1.Simple Harmonic.
Physics 2113 Lecture 03: WED 17 JAN CH13: Gravitation III Physics 2113 Jonathan Dowling Michael Faraday (1791–1867) Version: 9/18/2015 Isaac Newton (1642–1727)
Planetary Dynamics § 13.4–13.8. Closed Orbits U g + K tr = constant < 0 The closer the satellite is to the main body, the faster it moves Objects do not.
Physics 201: Lecture 24, Pg 1 Chapter 13 The beautiful rings of Saturn consist of countless centimeter-sized ice crystals, all orbiting the planet under.
 Galileo was the first who recognize the fact that all bodies, irrespective of their masses, fall towards the earth with a constant acceleration.  The.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: Newtonian gravity Planetary orbits Gravitational Potential Energy.
Universal Gravitation Physics Mr. Padilla. Falling Apple hits Newton on the head. According to the law of inertia, it would not fall unless acted upon.
AP Physics C. What causes YOU to be pulled down? THE EARTH….or more specifically…the EARTH’S MASS. Anything that has MASS has a gravitational pull towards.
Chapter 13 Gravitation. Newton’s law of gravitation Any two (or more) massive bodies attract each other Gravitational force (Newton's law of gravitation)
Monday, Oct. 4, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Newton’s Law of Universal Gravitation 2.Kepler’s Laws 3.Motion in Accelerated Frames PHYS.
Gravitation. Gravitational Force and Field Newton proposed that a force of attraction exists between any two masses. This force law applies to point masses.
AP Physics C I.F Oscillations and Gravitation. Kepler’s Three Laws for Planetary Motion.
Chapter 12 Universal Law of Gravity
Copyright © 2012 Pearson Education Inc. Orbital motion, final review Physics 7C lecture 18 Thursday December 5, 8:00 AM – 9:20 AM Engineering Hall 1200.
Gravitation AP Physics 1. Newton’s Law of Gravitation What causes YOU to be pulled down? THE EARTH….or more specifically…the EARTH’S MASS. Anything that.
Monday, Oct. 6, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #11 Newton’s Law of Gravitation Kepler’s Laws Work Done by.
Gravitational Field Historical facts Geocentric Theory Heliocentric Theory – Nicholas Copernicus (1473 – 1543) Nicholas Copernicus – All planets, including.
Newton’s Law of Universal Gravitation
Example How far from the earth's surface must an astronaut in space be if she is to feel a gravitational acceleration that is half what she would feel.
Monday, June 11, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Monday, June 11, 2007 Dr. Jaehoon Yu Forces in Non-uniform.
Chapter 7 Rotational Motion and The Law of Gravity.
今日課程內容 CH11 滾動 力矩 角動量 陀螺儀 CH13 重力 牛頓萬有引力 重力位能 行星運動與衛星軌道運動.
Chapter 13 Gravitation Newton’s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the.
Chapter 13 Gravitation.
Kepler’s Laws of planetary motion Newton’s law of universal gravitation Free fall acceleration on surface of a planet Satellite motion Lecture 13: Universal.
Spring 2002 Lecture #21 Dr. Jaehoon Yu 1.Kepler’s Laws 2.The Law of Gravity & The Motion of Planets 3.The Gravitational Field 4.Gravitational.
Gravitation Reading: pp Newton’s Law of Universal Gravitation “Every material particle in the Universe attracts every other material particle.
Physics 1501: Lecture 16, Pg 1 Physics 1501: Lecture 16 Today’s Agenda l Announcements çHW#6: Due Friday October 14 çIncludes 3 problems from Chap.8 l.
Chapter 7 Rotational Motion and The Law of Gravity.
Chapter 13 Gravitation & 13.3 Newton and the Law of Universal Gravitation Newton was an English Scientist He wanted to explain why Kepler’s Laws.
1 The law of gravitation can be written in a vector notation (9.1) Although this law applies strictly to particles, it can be also used to real bodies.
Satellite Physics & Planetary Motion Illustration from Isaac Newton, Philosophiae Naturalis Principia Mathematica, Book III Isaac Newton was the first.
Chapter 13 Gravitation.
Chapter 11 – Gravity Lecture 1 April 6, 2010
Newton’s Law of Universal Gravitation
Chapter 13 Universal Gravitation
Fundamentals of Physics School of Physical Science and Technology
PHYS 1443 – Section 003 Lecture #11
Chapter 13 Gravitation.
Universal Gravitation
9. Gravitation 9.1. Newton’s law of gravitation
Gravitational Fields, Circular Orbits and Kepler
PHYS 1443 – Section 001 Lecture #8
Gravitational Fields, Circular Orbits and Kepler’s Laws
Presentation transcript:

Chapter 13 Gravitation

Key contents Newton’s law of gravitation Gravitational field Gravitational potential energy Kepler’s laws of planetary motion Satellites in circular orbits Einstein and gravitation

13.2 Newton’s Law of Gravitation Here m1 and m2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G =6.67 x10-11 Nm2/kg2 =6.67 x10-11 m3/kg s2

Gravitational shielding? Anti-gravity?? 12.3 Gravitation and the Principle of Superposition For n interacting particles, we can write the principle of superposition for the gravitational forces on particle 1 as Here F1,net is the net force on particle 1 due to the other particles and, for example, F13 is the force on particle 1 from particle 3, etc. Therefore, The gravitational force on a particle from a real (extended) object can be expressed as: Here the integral is taken over the entire extended object . Gravitational shielding? Anti-gravity??

Try to check the above statements! Note: A uniform spherical shell of matter attracts a particle that is outside the shell as if all the shell’s mass were concentrated at its center. A uniform spherical shell of matter does not have any gravitational force on a particle inside the shell. Try to check the above statements!

Example, Net Gravitational Force: Figure 13-4a shows an arrangement of three particles, particle 1 of mass m1= 6.0 kg and particles 2 and 3 of mass m2=m3=4.0 kg, and distance a =2.0 cm. What is the net gravitational force 1,net on particle 1 due to the other particles? Relative to the positive direction of the x axis, the direction of F1,net is: Calculations:

13.4: Gravitation Near Earth’s Surface If the particle is released, it will fall toward the center of Earth, as a result of the gravitational force , with an acceleration we shall call the gravitational acceleration ag. Newton’s second law tells us that magnitudes F and ag are related by If the Earth is a uniform sphere of mass M, the magnitude of the gravitational force from Earth on a particle of mass m, located outside Earth a distance r from Earths center, is Therefore, # ag is the magnitude of the gravitational field established by mass M.

Earth’s mass is not distributed uniformly, and 13.4: Gravitation Near Earth’s Surface Any g value measured at a given location will differ from the ag value given before for two reasons: Earth’s mass is not distributed uniformly, and Earth is not a perfect sphere. Besides, due to Earth’s rotation, the measured (apparent) weight W is different from the local gravitational force as (at latitude θ)

Example, Difference in Accelerations

13.4: Gravitation Inside Earth A uniform shell of matter exerts no net gravitational force on a particle located inside it. Sample Problem Three explorers attempt to travel by capsule through a tunnel directly from the south pole to the north pole. According to the story, as the capsule approaches Earth’s center, the gravitational force on the explorers becomes alarmingly large and then, exactly at the center, it suddenly but only momentarily disappears. Then the capsule travels through the second half of the tunnel, to the north pole. Check this story by finding the gravitational force on the capsule of mass m when it reaches a distance r from Earth’s center. Assume that Earth is a sphere of uniform density r (mass per unit volume).

The gravitational potential energy of a two-particle system is: It is additive, i.e.,

13.6: Gravitational Potential Energy where W is the work done by the conservative force to move the ball from point P (at distance R) to infinity. Work can also be expressed in terms of potential energies as

13.6: Gravitational Potential Energy Path Independence The work done along each circular arc is zero, because the direction of F is perpendicular to the arc at every point. Thus, W is the sum of only the works done by F along the three radial lengths. The gravitational force is a conservative force. Thus, the work done by the gravitational force on a particle moving from an initial point i to a final point f is independent of the path taken between the points. The change DU in the gravitational potential energy from point i to point f is given by Since the work W done by a conservative force is independent of the actual path taken, the change DU in gravitational potential energy is also independent of the path taken.

13.6: Gravitational Potential Energy: Potential Energy and Force

13.6: Gravitational Potential Energy: Escape Speed

13.6: Gravitational Potential Energy: Escape Speed

Example:

13.7: Planets and Satellites: Kepler’s 1st Law 1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the Sun at one focus. # These three laws for planet motion were discovered by Johannes Kepler (1571-1630) in 1609, from data collected by Tycho Brahe (1546-1601).

13.7: Planets and Satellites: Kepler’s 2nd Law Conservation of angular momentum L: 2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out equal areas in the plane of the planet’s orbit in equal time intervals; that is, the rate dA/dt at which it sweeps out area A is constant.

13.7: Planets and Satellites: Kepler’s 3rd Law 3. THE LAW OF PERIODS: The square of the period of any planet is proportional to the cube of the semimajor axis of its orbit. Consider a circular orbit with radius r (the radius of a circle is equivalent to the semimajor axis of an ellipse). Applying Newton’s second law to the orbiting planet yields Using the relation of the angular velocity, w, and the period, T, one gets:

Example, Halley’s Comet

13.8: Satellites: Orbits and Energy The potential energy of the system is given by For a satellite in a circular orbit, Thus, one gets: For an elliptical orbit (semimajor axis a),

Example, Mechanical Energy of a Bowling Ball

That is, the gravitational mass and the inertia mass are equivalent. 13.9: Einstein and Gravitation The fundamental postulate of Einstein’s general theory of relativity about gravitation (the gravitating of objects toward each other) is called the principle of equivalence, which says that gravitation and acceleration are equivalent. That is, the gravitational mass and the inertia mass are equivalent.

13.9: Einstein and Gravitation: Curvature of Space

13.9: Einstein and Gravitation: Curvature of Space

Homework: Problems 13, 21, 42, 54, 66