THE MICROWAVE SPECTRUM, STRUCTURE, AND DOUBLE PROTON EXCHANGE OF FORMIC ACID – NITRIC ACID Becca Mackenzie Chris Dewberry, Ken Leopold Department of Chemistry,

Slides:



Advertisements
Similar presentations
68th OSU International Symposium on Molecular Spectroscopy TH08
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Cristina PUZZARINI Dip. di Chimica “G. Ciamician”, Università di Bologna QUANTUM-CHEMICAL CALCULATIONS of SPECTROSCOPIC PARAMETERS for ROTATIONAL SPECTROSCOPY:
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer Brian Howard, Edward Steer, Michael Tayler, Bin Ouyang (Oxford.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
Galen Sedo, Jamie Doran, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Study of the HNO 3 -(H 2 O) 3 Tetramer.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
N 2 -CO 2 Consequences for Global Warming? Daniel Frohman Wesleyan University TH01 June 22, 2010.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Formic Sulfuric Anhydride: A new chemical species with possible implications for atmospheric aerosol 1 Rebecca B. Mackenzie, Christopher T. Dewberry, and.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
1 L. Spada, Q. Gou, B.M. Giuliano, W. Caminati. 70 th Symposium, Urbana-Champaign, June 22-26, RH06- THE ROTATIONAL SPECTRUM OF PYRIDINE – FORMIC.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Probing Molecular Dynamics with Microwave Spectroscopy Adam Daly, Stephen G. Kukolich.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
Pure rotational spectrum of the “non-polar” dimer of Formic acid
Department of Chemistry
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
Carlos Cabezas and Yasuki Endo
60th International Symposium on Molecular Spectroscopy
Yoon Jeong Choi, Alex Treviño, Susanna L. Stephens, Stephen A
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Rotational Spectra of Adducts of Pyridine with Methane and Its Halides
Becca Mackenzie Chris Dewberry, Ken Leopold
Department of Chemistry
Aaron M. Pejlovas and Dr. Stephen G. Kukolich
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
Presentation transcript:

THE MICROWAVE SPECTRUM, STRUCTURE, AND DOUBLE PROTON EXCHANGE OF FORMIC ACID – NITRIC ACID Becca Mackenzie Chris Dewberry, Ken Leopold Department of Chemistry, University of Minnesota 69 th International Symposium of Molecular Spectroscopy 1

Carboxylic Acid Dimers Simple carboxylic acid dimers as prototypes for larger, doubly hydrogen bonded complexes, e.g. DNA base pairs Formic acid – Acetic acid 3 Formic acid – Propiolic acid 1,2 Formic acid – Benzoic acid 4 [1] Daly, A. M., Bunker, P. R., & Kukolich, S. G. (2010). JCP, 132(20), [2] Daly, A. M., Douglass, K. O., Sarkozy, L. C., Neill, J. L., Muckle, M. T., Zaleski, D. P., Pate, B. H., Kukolich, S. G. (2011). JCP, 135(15), [3] Tayler, M. C. D., Ouyang, B., & Howard, B. J. (2011). JCP, 134(5), [4] Evangelisti, L., Patricia, E., Cocinero, E. J., Castan, F., Lesarri, A., Caminati, W., & Meyer, R. (2012). JCPL, 3, [5] Feng, G., Favero, L. B., Maris, A., Vigorito, A., Caminati, W., & Meyer, R. (2012). JACS, 134, 19281– Acrylic acid dimer 5 2

Double Proton Transfer  H  Frequency 3

Ab initio results for carboxylic acid dimers Complex Barrier Height (kcal/mol) Binding Energy (kcal/mol) a Hydrogen Bond Lengths (Å) Formic- Formic (14.5)1.80/1.80 Formic- Propiolic (14.6)1.80/1.78 Formic- Benzoic (15.4)1.79/1.75 Acrylic- Acrylic (15.8)1.76/1.76 Nitric- Formic (11.8)1.97/1.76 Double proton exchange observed for all Will formic acid – nitric acid tunnel? a.Binding energies in parentheses are counterpoise corrected MP2/6-31++G(2d,2p) [2] Daly, A. M., Douglass, K. O., Sarkozy, L. C., Neill, J. L., Muckle, M. T., Zaleski, D. P., Pate, B. H., Kukolich, S. G. (2011). JCP, 135(15), [3] Evangelisti, L., Patricia, E., Cocinero, E. J., Castan, F., Lesarri, A., Caminati, W., & Meyer, R. (2012). JCPL, 3, [4] Feng, G., Favero, L. B., Maris, A., Vigorito, A., Caminati, W., & Meyer, R. (2012). JACS, 134, 19281– [1] Ortlieb, M., & Havenith, M. (2007). JCP, 111,

Experimental Introduction of Sample to Cavity HNO 3 through pulsed-nozzle HCOOH through continuous flow line Water kills the signal and creates a lot of unwanted ones Started with 70% HNO 3, 91% HCOOH Finished with 91% HNO 3, 95% HCOOH HCOOH in Ar HNO 3 in Ar Cavity 5

Searches for the J = 2←1 Transitions K=1 50 MHz K=0 50 MHz K=1 30 MHz Frequency, MHz 6

Observed Lines and Fit MP2/6-311g(2d,2p) (MHz) Fit Rotational Constants (MHz) Frequency, MHz 7

HCOOH - H 15 NO 3 HCOOD - H 15 NO 3 Evidence of Double Proton Exchange

Spin Statistics and Relative Intensities :1 ratio expected on the basis of 1 H spin statistics HCOOH-H 15 NO 3 -

Evidence of Double Proton Exchange HCOOH-HNO

Single State Fits Constants HCOOH-HNO State HCOOH-HNO State HCOOH-H 15 NO State HCOOH-H 15 NO State A (MHz) (98) (49) (54) (44) B (MHz) (36) (74) (44) (59) C (MHz) (36) (60) (40) (44) ID (amu Å 2 ) N Χ aa (MHz) (15) (22)-- 14 N Χ bb -Χ cc (MHz)0.513(11)0.440(56)-- Δ J (kHz)0.3249(49)0.2897(43)0.2912(33)0.2875(32) Δ JK (kHz)0.820(87)1.261(46)1.260(54)1.313(53) δ J (kHz)0.0634(49)0.0760(95)0.0507(35)0.0646(42) RMS (kHz)2222 N

What about the tunneling frequency? EBEB Frequency 12 µ b = 0.21 D µ a = 2.69 D

Comparison of Systems Complex Barrier Height (kcal/mol) Binding Energy (kcal/mol) a Hydrogen Bond Lengths (Å) Splitting ( ) (MHz) b Formic- Formic (14.5)1.80/1.80~40 Formic- Propiolic (14.6)1.80/ Formic- Benzoic (15.4)1.79/ Acrylic- Acrylic (15.8)1.76/ Nitric- Formic (11.8)1.97/ a.Binding energies in parentheses are counterpoise corrected b.Experimental values, formic-formic value calculated from IR constants MP2/6-31++G(2d,2p) 13 [2] Daly, A. M., Douglass, K. O., Sarkozy, L. C., Neill, J. L., Muckle, M. T., Zaleski, D. P., Pate, B. H., Kukolich, S. G. (2011). JCP, 135(15), [3] Evangelisti, L., Patricia, E., Cocinero, E. J., Castan, F., Lesarri, A., Caminati, W., & Meyer, R. (2012). JCPL, 3, [4] Feng, G., Favero, L. B., Maris, A., Vigorito, A., Caminati, W., & Meyer, R. (2012). JACS, 134, 19281– [1] Ortlieb, M., & Havenith, M. (2007). JCP, 111, 7355.

Rotational Constants for Seven Isotopologues 14 IsotopeA (MHz)B (MHz)C (MHz) 14 N Χ aa (MHz) 14 N Χ bb -Χ cc (MHz) HCOOH-HNO State (49) (74) (60) (22)0.440(56) HCOOH-HNO State (98) (36) (36) (15)0.513(11) HCOOH-H 15 NO State (44) (59) (44)-- HCOOH-H 15 NO State (54) (44) (40)-- HCOOD-H 15 NO (27) (19) (17)-- HCOOD-HNO (99) (81) (10)-0.811(17)0.460(52) H 13 COOH-HNO (15) (13) (13)-0.805(45)0.54(25) HCOOH-DNO (10) (11) (11)-0.839(11)0.23(19) DCOOH-HNO (57) (34) (41)-0.777(25)0.344(92)

Structure Analysis Leopold, K. R. (2012). JMS, 278, 27–30. 15

Schematic of Structure Determination R cm Fit from C rotational constants θ1θ1 From 14 N nuclear hyperfine θ2θ2 Using R cm and θ 1 adjusted θ 2 to reproduce A or B Done for all 7 isotopologues using ground state rotational constants Using experimental moments of inertia for monomers 16 Nitric acid structure- Cox, A.P.; Ellis, M.C.; Attfield, C.J.; Ferris, A.C. (1994) JMS. 320, 91. Formic acid structure- Cazzoli, G.; Puzzarini, C.; Stopkowicz, S.; Gauss, J. (2011) AJSS. 196, 10. Winnewisser, M.; Winnewisser, B.P.; Stein, M.; Birk, M.; Wagner, G.; Winnewisser, G.; Yamada, K.M.T., Belov, S.P.; Baskakow, O.I. (2002) JMS., 216, 259.

Structure Results for Each Isotopologue ComplexR cm 11 22 R(H8-O5)R(O9-H4)<(O5-H8-O6)<(O3-H4-O9) HNO 3 - HCOOH H 15 NO 3 - HCOOH H 15 NO 3 - HCOOD HNO 3 - HCOOD HNO 3 - H 13 COOH DNO 3 - HCOOH HNO 3 - DCOOH Average of Max & Min Value1.663(17)1.849(10)168.1(22)172.3(9) 17

Structure of Formic Acid – Nitric Acid Seven isotopologues in total 1.663(17) Å 1.849(10) Å 168.1(22)° 172.3(9)° D 15 N D D 13 C 18

Structure from STRFIT R O5-O6 α C1-O5-O6 β O5-O6-N7 19 Kisiel, Z., (2003) JMS., 218, 58.

Structure from STRFIT Converged to one of two structures depending on the starting parameters 20 Å Å Å Å

Summary of Structural Parameters R(H8-O5)R(O9-H4)<(O5-H8-O6)<(O3-H4-O9) Inertial Equations1.663(17)1.849(10)168.1(22)172.3(9) STRFIT Value from STRFIT Ab initio Ab initio adjusted geometry 1.680(17)1.814(10)172.7(22)173.6(9) 21

Structure of Formic Acid – Nitric Acid Preferred structural values 1.680(17) Å 1.814(10) Å 172.7(22)° 173.6(9)°

Proton Transfer Parameter By examining values of the 14 N nuclear quadrupole coupling constant, χ cc, we are able to track the degree of proton release. NO 3 – HNO 3 HNO 3 - H 2 O HCOOH - HNO 3 Q PT HNO 3 - (H 2 O) 2 HNO 3 - N(CH 3 ) 3 100% 0% 23

Conclusions Like all good gophers, we tunnel Nitric acid – formic acid undergoes double proton transfer despite significant asymmetry in the hydrogen bonded structure. The splittings in the a-type spectra were two orders of magnitude smaller than those observed for related carboxylic acid dimers. Careful analysis of the moments of inertia yields excellent agreement with ab initio results, suggesting minimal delocalization. 24

Funding & Acknowledgements Leopold Group Dr. Chris Dewberry and Dr. Brooke Timp Lester C. and Joan M. Krogh Fellowship 25

Determination of θ 1 Determine τ from 14 N hyperfine Principle axis system of the quadrupole coupling tensor of HNO 3 does not coincide with its inertial axis system and because the Z axis does not exactly coincide with the a- axis of the complex 26 θ 1 =        Iterative method