Honors Geometry Section 8.3 Similarity Postulates and Theorems.

Slides:



Advertisements
Similar presentations
Concept: Use Similar Polygons
Advertisements

7.4 A Postulate for Similar Triangles. We can prove that 2 triangles are similar by showing that all 3 corresponding angles are congruent, and all 3 sides.
Congruent Polygons. Congruent segments have the same length.
Proving Triangles Congruent Advanced Geometry Triangle Congruence Lesson 2.
6.3 Congruent Triangles: SSS and SAS
Similarity in Triangles. Similar Definition: In mathematics, polygons are similar if their corresponding (matching) angles are congruent (equal in measure)
7.3 Proving Triangles Similar
7-3 Proving Triangles Similar. Triangle Similarity Angle-Angle Similarity Postulate: If two angles of one triangle are congruent to two angles of another.
7-3 Proving Triangles Similar
Geometry Sources: Discovering Geometry (2008) by Michael Serra Geometry (2007) by Ron Larson.
Lesson 6-3 Similar Triangles. Ohio Content Standards:
LESSON 8.3: Similar Polygons
Benchmark 37 I can identify two triangles as similar using SSS, SAS, or AA triangle proportionality theorem.
Using Proportions to Solve Geometry Problems Section 6.3.
Similarity Theorems.
Warm-up 4.2 Identify each of the following from the diagram below. 1.Center 2.3 radii 3.3 chords 4.Secant 5.Tangent 6.Point of Tangency C A B D E G H F.
Proving Triangles Congruent
8-3 Proving Triangles Similar Learning Target: I will be able to prove triangles are similar. Goal 2.03.
Monday, October 22, 2012 Homework: p. 211 #28-34 even.
“Why so serious?”.
Similarity in Triangles Unit 13 Notes Definition of Similarity.
Copyright © by Holt, Rinehart and Winston. All Rights Reserved. Warm up 1.What is the ratio of the corresponding side lengths for two congruent triangles?
(AA, SSS, SAS). AA Similarity (Angle-Angle) If 2 angles of one triangle are congruent to 2 angles of another triangle, then the triangles are similar.
Geometry Sections 6.4 and 6.5 Prove Triangles Similar by AA Prove Triangles Similar by SSS and SAS.
Prove Triangles Similar by SSS and SAS
Geometry 6.5 SWLT: Use the SSS & SAS Similarity Theorems.
8-3 Proving Triangles Similar M11.C B
SIMILARITY: A REVIEW A REVIEW Moody Mathematics. Midsegment: a segment that joins the midpoints of 2 sides of a triangle? Moody Mathematics.
Lesson 7 – 3 Similar Triangles
Solve the following proportions. a = 9 b = 7 c = 6 d = ±6.
Question about homework? Any questions on the homework? (choose random problems)
4-2 Triangle Congruence by SSS and SAS. Side-Side-Side (SSS) Postulate If the three sides of one triangle are congruent to the three sides of another.
Drill Write your homework in your planner Take out your homework Find all angle measures:
U W VX Z Y XYZ 5/ Warm Up.
The product of the means equals the product of the extremes.
 There are 3 ways to show two triangles are similar to each other. Those 3 ways are: 1. Angle-Angle Similarity Postulate. (AA~) 2. Side-Angle-Side Similarity.
Similarity in Triangles Angle-Angle Similarity Postulate (AA~)- If two angles of one triangle are congruent to two angles of another triangle, then the.
Triangle Similarity: Angle Angle. Recall Recall the definitions of the following: Similar Congruent Also recall the properties of similarity we discussed.
Angle-Angle (AA) Similarity Postulate If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.
Triangle Similarity Keystone Geometry. 2 Two polygons are similar if and only if their corresponding angles are congruent and the measures of their corresponding.
Proving Congruence – SSS, SAS Side-Side-Side Congruence Postulate (SSS) If the sides of one triangle are congruent to the sides of a second triangle, then.
For 9 th /10 th grade Geometry students Use clicker to answer questions.
Geometry Sections 4.3 & 4.4 SSS / SAS / ASA
Proving Triangles Similar by AA , SAS, & SSS
Warm Up Solve each proportion If ∆QRS ~ ∆XYZ, identify the pairs of congruent angles and write 3 proportions using pairs of corresponding.
Proving Triangle Congruency. What does it mean for triangles to be congruent? Congruent triangles are identical meaning that their side lengths and angle.
Date: Topic: Proving Triangles Similar (7.6) Warm-up: Find the similarity ratio, x, and y. The triangles are similar. 6 7 The similarity ratio is: Find.
Are the following triangles congruent? Why or why not? Write a congruence statement for the triangles. 21 ° 74 ° 85 ° 21 ° 74 ° 85 ° T S R L M N.
Section Review Triangle Similarity. Similar Triangles Triangles are similar if (1) their corresponding (matching) angles are congruent (equal)
HONORS GEOMETRY 4.4. Proving Triangles Congruent (SSS, SAS)
CONGRUENT TRIANGLES Side-Side-Side Postulate (SSS) Side-Side-Side Congruence: If the sides of one triangle are congruent to the sides of a second triangle,
Geometry. Congruent polygons have corresponding sides that are congruent and corresponding angles that are congruent.
 Students will apply the SSS & SAS Similarity Theorems to determine similarity in triangles.  Why? So you can show that triangles are similar, as seen.
Side-side-side (SSS) postulate If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.
4.2 Notes SSS and SAS. What can you conclude? Look at the diagram. What can you conclude, if anything? How can you justify your conclusion(s).
Proving Side-Side-Side. Proving Side-Angle-Side Create a 55 ° angle. Its two sides should be 3.5 and 5 inches long. Enclose your angle to make a triangle.
6.2 Similar Triangles or Not?
Prove triangles congruent by ASA and AAS
7.4 Showing Triangles are Similar: SSS and SAS
Sections 6.3 & 6.4 Proving triangles are similar using AA, SSS, SAS
Similarity Postulates
Similarity in Triangles
Proving Triangles Similar Related Topic
Proving Triangles Similar.
8.3 Methods of Proving Triangles Similar
Proving Triangles Similar.
Similar Similar means that the corresponding sides are in proportion and the corresponding angles are congruent. (same shape, different size)
6-3/6-4: Proving Triangles Similar
8.3 Methods of Proving Triangles are Similar Advanced Geometry 8.3 Methods of Proving 
  Triangles are Similar Learner Objective: I will use several.
Module 16: Lesson 4 AA Similarity of Triangles
Presentation transcript:

Honors Geometry Section 8.3 Similarity Postulates and Theorems

To say that two polygons are similar by the definition of similarity, we would need to know that all corresponding sides are ______________ and all corresponding angles are ___________. proportional congruent

Therefore, in order to say that two triangles are similar by the definition of similarity, we would need to know that all three sides of one triangle are proportional to the corresponding sides of the second triangle and that all three angles of the first triangle are congruent to the corresponding angles in the second triangle.

The following postulate and theorems give us easier methods for determining if two triangles are similar.

Angle-Angle Similarity Postulate (AA Similarity) If TWO ANGLES OF ONE TRIANGLE ARE CONGRUENT TO TWO ANGLES OF A SECOND TRIANGLE, then the triangles are similar.

Side-Angle-Side Similarity Theorem (SAS Similarity) If TWO SIDES of one triangle are PROPORTIONAL to TWO SIDES of a second triangle and the INCLUDED ANGLES are CONGRUENT, then the triangles are similar.

An included angle of two sides is the angle FORMED BY THOSE TWO SIDES.

Side-Side-Side Similarity Theorem (SSS Similarity) If the THREE SIDES of one triangle are PROPORTIONAL to the THREE SIDES of a second triangle, then the triangles are similar.

A B C D E