Dictionaries 4/17/2017 3:23 PM Hash Tables  1 025-612-0001 2 981-101-0002 3  4 451-229-0004.

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Hash Tables
Advertisements

© 2004 Goodrich, Tamassia Hash Tables
Dictionaries 4/1/2017 2:36 PM Hash Tables  …
Hashing as a Dictionary Implementation
© 2004 Goodrich, Tamassia Hash Tables1  
Hashing Chapters What is Hashing? A technique that determines an index or location for storage of an item in a data structure The hash function.
Chapter 9: Maps, Dictionaries, Hashing Nancy Amato Parasol Lab, Dept. CSE, Texas A&M University Acknowledgement: These slides are adapted from slides provided.
Maps. Hash Tables. Dictionaries. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia.
Data Structures Lecture 12 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
Log Files. O(n) Data Structure Exercises 16.1.
Hashing Techniques.
CSC401 – Analysis of Algorithms Lecture Notes 5 Heaps and Hash Tables Objectives: Introduce Heaps, Heap-sorting, and Heap- construction Analyze the performance.
Sets and Maps ITEC200 – Week Chapter Objectives To understand the Java Map and Set interfaces and how to use them To learn.
Dictionaries and Hash Tables1  
1 Chapter 9 Maps and Dictionaries. 2 A basic problem We have to store some records and perform the following: add new record add new record delete record.
© 2006 Pearson Addison-Wesley. All rights reserved13 A-1 Chapter 13 Hash Tables.
Sets and Maps Chapter 9. Chapter 9: Sets and Maps2 Chapter Objectives To understand the Java Map and Set interfaces and how to use them To learn about.
Hash Tables1 Part E Hash Tables  
Hash Tables1 Part E Hash Tables  
Hash Tables1 Part E Hash Tables  
Hashing General idea: Get a large array
Data Structures Using C++ 2E Chapter 9 Searching and Hashing Algorithms.
Introducing Hashing Chapter 21 Copyright ©2012 by Pearson Education, Inc. All rights reserved.
Maps, Hash Tables and Dictionaries Chapter 10.1, 10.2, 10.3, 10.5.
Maps, Dictionaries, Hashing
1. 2 Problem RT&T is a large phone company, and they want to provide enhanced caller ID capability: –given a phone number, return the caller’s name –phone.
CS 221 Analysis of Algorithms Data Structures Dictionaries, Hash Tables, Ordered Dictionary and Binary Search Trees.
Hash Tables1   © 2010 Goodrich, Tamassia.
Dictionaries and Hash Tables1 Hash Tables  
Maps, Hash Tables, Skip Lists, Sets last Update: Nov 4, 2014 EECS2011: Maps, Hash Tables, Skip Lists, Sets1.
1 HASHING Course teacher: Moona Kanwal. 2 Hashing Mathematical concept –To define any number as set of numbers in given interval –To cut down part of.
Hashing Hashing is another method for sorting and searching data.
© 2004 Goodrich, Tamassia Hash Tables1  
Hashing as a Dictionary Implementation Chapter 19.
Tirgul 11 Notes Hash tables –reminder –examples –some new material.
Hashtables. An Abstract data type that supports the following operations: –Insert –Find –Remove Search trees can be used for the same operations but require.
Chapter 13 C Advanced Implementations of Tables – Hash Tables.
CHAPTER 9 HASH TABLES, MAPS, AND SKIP LISTS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++,
Sets and Maps Chapter 9. Chapter Objectives  To understand the Java Map and Set interfaces and how to use them  To learn about hash coding and its use.
Lecture14: Hashing Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Hash Maps Rem Collier Room A1.02 School of Computer Science and Informatics University College Dublin, Ireland.
Algorithms Design Fall 2016 Week 6 Hash Collusion Algorithms and Binary Search Trees.
Sets and Maps Chapter 9.
Hash Tables 1/28/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M.
Hashing (part 2) CSE 2011 Winter March 2018.
Hashing CSE 2011 Winter July 2018.
Hashing Alexandra Stefan.
Dictionaries and Hash Tables
Dictionaries Dictionaries 07/27/16 16:46 07/27/16 16:46 Hash Tables 
© 2013 Goodrich, Tamassia, Goldwasser
Dictionaries 9/14/ :35 AM Hash Tables   4
Hash Tables 3/25/15 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M.
Searching.
Data Structures Maps and Hash.
Hash Tables 11/22/2018 3:15 AM Hash Tables  1 2  3  4
Dictionaries 11/23/2018 5:34 PM Hash Tables   Hash Tables.
Dictionaries and Hash Tables
Copyright © Aiman Hanna All rights reserved
Hash Tables   Maps Dictionaries 12/7/2018 5:58 AM Hash Tables  
CH 9.2 : Hash Tables Acknowledgement: These slides are adapted from slides provided with Data Structures and Algorithms in C++, Goodrich, Tamassia and.
Dictionaries and Hash Tables
Dictionaries 1/17/2019 7:55 AM Hash Tables   4
CH 9.2 : Hash Tables Acknowledgement: These slides are adapted from slides provided with Data Structures and Algorithms in C++, Goodrich, Tamassia and.
Hash Tables Computer Science and Engineering
Hash Tables Computer Science and Engineering
Hash Tables Computer Science and Engineering
Sets and Maps Chapter 9.
Dictionaries 4/5/2019 1:49 AM Hash Tables  
CS210- Lecture 16 July 11, 2005 Agenda Maps and Dictionaries Map ADT
Dictionaries and Hash Tables
Presentation transcript:

Dictionaries 4/17/2017 3:23 PM Hash Tables  1 025-612-0001 2 981-101-0002 3  4 451-229-0004

{(J, Jane), (B, Bill), (B2, Bill), (S, Sam), (B1, Bob)} Maps and the Map ADT Mathematically, a Map is a set of ordered pairs whose elements are known as the key and the value Keys are required to be unique, but values are not necessarily unique You can think of each key as a “mapping” to a particular value {(J, Jane), (B, Bill), (B2, Bill), (S, Sam), (B1, Bob)}

Map ADT The main operations of a map are for searching, inserting, and deleting items

Map ADT Map ADT methods: get(k): if the map M has an entry with key k, return its assoiciated value; else, return null put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k remove(k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null size(), isEmpty()

Example Operation Output Map isEmpty() true Ø put(5,A) null (5,A) put(7,B) null (5,A),(7,B) put(2,C) null (5,A),(7,B),(2,C) put(8,D) null (5,A),(7,B),(2,C),(8,D) put(2,E) C (5,A),(7,B),(2,E),(8,D) get(7) B (5,A),(7,B),(2,E),(8,D) get(4) null (5,A),(7,B),(2,E),(8,D) get(2) E (5,A),(7,B),(2,E),(8,D) size() 4 (5,A),(7,B),(2,E),(8,D) remove(5) A (7,B),(2,E),(8,D) remove(2) E (7,B),(8,D) get(2) null (7,B),(8,D) isEmpty() false (7,B),(8,D)

Hash Tables The goal behind the hash table is to be able to access an entry based on its key value, not its location We want to be able to access an element directly through its key value, rather than having to determine its location first by searching for the key value in the array Using a hash table enables us to retrieve an item in constant time (on average) linear (worst case)

Index Calculation The basis of hashing is to transform the item’s key value into an integer value which will then be transformed into a table index Called a hash function

Hash Functions A hash function h maps keys of a given type to integers in a fixed interval [0, N - 1] Example: h(x) = x mod N is a hash function for integer keys The integer h(x) is called the hash value of key x A hash table for a given key type consists of Hash function h Array (called table) of size N When implementing a map with a hash table, the goal is to store item (k, o) at index i = h(k)

Example We design a hash table for a map storing entries as (SSN, Name), where SSN (social security number) is a nine-digit positive integer Our hash table uses an array of size N = 10,000 and the hash function h(x) = last four digits of x  1 2 3 4 9997 9998 9999 … 451-229-0004 981-101-0002 200-751-9998 025-612-0001

Hash Functions A hash function is usually specified as the composition of two functions: Hash code: h1: keys  integers Compression function: h2: integers  [0, N - 1] The hash code is applied first, and the compression function is applied next on the result, i.e., h(x) = h2(h1(x)) The goal of the hash function is to “disperse” the keys in an apparently random way

Methods for Generating Hash Codes In most applications, the keys will consist of strings of letters or digits rather than a single character The number of possible key values is much larger than the table size Generating good hash codes is somewhat of an experimental process Besides a random distribution of its values, the hash function should be relatively simple and efficient to compute

Hash Codes Memory address: Integer cast: Component sum: We reinterpret the memory address of the key object as an integer (default hash code of all Java objects) Good in general, except for numeric and string keys Integer cast: We reinterpret the bits of the key as an integer Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in Java) Component sum: We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows) Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in Java)

Hash Codes Polynomial accumulation: We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits) a0 a1 … an-1 We evaluate the polynomial p(z) = a0 + a1 z + a2 z2 + … … + an-1zn-1 at a fixed value z, ignoring overflows Especially suitable for strings (e.g., the choice z = 33 gives at most 6 collisions on a set of 50,000 English words) Polynomial p(z) can be evaluated in O(n) time using Horner’s rule: The following polynomials are successively computed, each from the previous one in O(1) time p0(z) = an-1 pi (z) = an-i-1 + zpi-1(z) (i = 1, 2, …, n -1) We have p(z) = pn-1(z)

Compression Function Mod: h2 (y) = y mod N The size N of the hash table is usually chosen to be a prime The reason has to do with number theory and is beyond the scope of this course

Collision Handling Collisions occur when different elements are mapped to the same cell Separate Chaining: let each cell in the table point to a linked list of entries that map there  1 2 3 4 451-229-0004 981-101-0004 025-612-0001 Separate chaining is simple, but requires additional memory outside the table

Linear Probing Example: h(x) = x mod 13 Open addressing: the colliding item is placed in a different cell of the table Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell Each table cell inspected is referred to as a “probe” Colliding items lump together, causing future collisions to cause a longer sequence of probes Example: h(x) = x mod 13 Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order 1 2 3 4 5 6 7 8 9 10 11 12 41 18 44 59 32 22 31 73 1 2 3 4 5 6 7 8 9 10 11 12

Search with Linear Probing Consider a hash table A that uses linear probing get(k) We start at cell h(k) We probe consecutive locations until one of the following occurs An item with key k is found, or An empty cell is found, or N cells have been unsuccessfully probed Algorithm get(k) i  h(k) p  0 repeat c  A[i] if c =  return null else if c.key () = k return c.element() else i  (i + 1) mod N p  p + 1 until p = N

Table Wraparound and Search Termination As you increment the table index, your table should wrap around as in a circular array Leads to the potential of an infinite loop How do you know when to stop searching if the table is full and you have not found the correct value? Stop when N cells are probed

Updates with Linear Probing To handle insertions and deletions, we introduce a special object, called AVAILABLE, which replaces deleted elements remove(k) We search for an entry with key k If such an entry (k, o) is found, we replace it with the special item AVAILABLE and we return element o Else, we return null put(k, o) We throw an exception if the table is full We start at cell h(k) We probe consecutive cells until one of the following occurs A cell i is found that is either empty or stores AVAILABLE, or N cells have been unsuccessfully probed We store entry (k, o) in cell i

Reducing Collisions Using Quadratic Probing Linear probing tends to form clusters of keys in the table, causing longer search chains Quadratic probing can reduce the effect of clustering For key k, try successively: h(k) mod N, (h(k)+1) mod N, (h(k)+4) mod N, (h(k)+9) mod N, ….

Disadvantages of quadratic probing Next index calculation is time consuming as it involves multiplication, addition, and modulo division Not all table elements are examined when looking for an insertion index cannot insert when table is not full!! Cannot find an existing item!! It can be proved that this can’t happen if the table is at most half full, and N is a prime number: but half full table is quite a waste of space.

Double Hashing Let i = h(k) Double hashing uses a secondary hash function d(k) and handles collisions by placing an item in the first available cell of the series (i + jd(k)) mod N for j = 0, 1, … , N - 1 The secondary hash function d(k) cannot have zero values The table size N must be a prime to allow probing of all the cells

Double hashing Common choice for the secondary hash function: where d2(k) = q - k mod q where q < N q is a prime The possible values for d2(k) are 1, 2, … , q

Example of Double Hashing Consider a hash table storing integer keys that handles collision with double hashing N = 13 h(k) = k mod 13 d(k) = 7 - k mod 7 Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order 1 2 3 4 5 6 7 8 9 10 11 12 31 41 18 32 59 73 22 44 1 2 3 4 5 6 7 8 9 10 11 12

Performance of Hashing In the worst case, searches, insertions and removals on a hash table take O(n) time The worst case occurs when all the keys inserted into the map collide The load factor a = n/N affects the performance of a hash table Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is 1 / (1 - a) The expected running time of all the map ADT operations in a hash table is O(1) In practice, hashing is very fast provided the load factor is not close to 1.

Rehash keep load factor under a desired threshold Ensure that the table is never full by increasing its size after an insertion if its load factor exceeds a specified threshold Double the table size Rehashing all entries to the new table

Implementation Considerations Class object implements methods hashCode and equals, so every class can access these methods unless it overrides them Object.equals compares two objects based on their addresses, not their contents Object.hashCode calculates an object’s hash code based on its address, not its contents Java recommends that if you override the equals method, then you should also override the hashCode method

Java’s Map based on a HashTable implementation java.util.HashMap