CHAPTER 8 CELLULAR ENERGY.

Slides:



Advertisements
Similar presentations
Photosynthesis and Cellular Respiration
Advertisements

Chapter 8 Cellular Energy
Chapter 8 Cellular Energy
Photosynthesis and Respiration
Chapter 8 Cellular Energy.
Chapter 8 Cellular Energy
Chapter 8 Cellular Energy
Chapter 4: Cells and Energy
Chapter 8 Cellular Energy 8.1 Cells and the Flow of Energy 8.2 Metabolic Reactions and Energy Transformations 8.3 Metabolic Pathways and Enzymes.
Chemical Energy and ATP
Chapter #6 and 7 Photosynthesis and Cellular Respiration.
Chapter 8 Cellular Energy.
Chapter 8 Photosynthesis
Transformation of Energy
Ch. 8.1 & 9 ATP, Cellular Respiration and Photosynthesis
Chapter Objectives  You will learn what ATP is  You will explain how ATP provides energy for the cell  You will describe how chloroplasts trap the.
Chapter 8: Photosynthesis
8.1 How Organisms Obtain Energy Mr. Purcell Biology I.
Cellular Respiration Cellular respiration is the controlled release of energy from organic compounds (lipids, carbohydrates and proteins) in cells to produce.
Ch 8 ~ Cellular Energy Section 1: How Organisms Obtain Energy
PHOTOSYNTHESIS AND CELLULAR RESPIRATION CHAPTER 8 & 9.
Photosynthesis is the process by which plants use sunlight, carbon dioxide and water to produce high energy carbohydrates such as sugars and starches.
4.1 Chemical Energy and ATP All cells need chemical energy Cell Energy = ATP ATP = Adenosine Triphosphate.
Chapter 8 Cellular Energy
Cell Energy: ATP, Photosynthesis & Cellular Respiration
Click on a lesson name to select. Cells and Energy Section 4.1: How Organisms Obtain Energy Section 4.2, 4.3: Photosynthesis Section 4.4, 4.5, 4.6: Cellular.
Cell Energy: ATP, Photosynthesis & Cellular Respiration Chapters 8 & 9.
SB3a. Students will be able to explain the cycling of energy through the processes of photosynthesis and respiration.
Cell Energy: Photosynthesis
Cells and Energy Photosynthesis & Cellular Respiration Energy of Life.
Chapter 8 – Cellular Energy Section 1 – How Organisms Obtain Energy.
Cell Energetics The cell’s energy compound is ATP. All cells (from bacteria, to plants, to humans) use ATP for cell energy. ATP video clip.
ATP, Photosynthesis, and Cellular Respiration Chapter 4 Sections 4.1, 4.2, and 4.3.
Chapter 9 Energy in a Cell. 9.1 Energy for Organisms All organisms require energy All organisms require energy –The energy source for everything on earth.
Energy For The Cell ATP, Photosynthesis, and Cellular Respiration.
Do Now: Get a textbook and turn to page 221 Read section 9.1: Chemical Pathways Answer Questions 1-4 on page 225.
 What did you eat this morning?  Why do you eat food?  How does your food get its food?  What is the process called in which organisms make their own.
Chapter 8 Photosynthesis *You need to write only what is in white.
Chapter 8 Cellular Energy. 8.1 Vocabulary Energy Thermodynamics Autotroph Heterotroph Metabolism Photosynthesis Cellular Respiration Adenosine Triphosphate.
Essential Questions What are the two laws of thermodynamics?
Chapter 8: Energy in a Cell
Unit 4: Photosynthesis and Cellular Respiration
Section 8-1 Energy and Life.
Chapter 8 Cellular Energy
Cellular Energy.
What do we call organisms that can make their own food?
Chapter 8 Cellular Energy
Cells and energy Chapter 4 Sections 1, 2, 4, 6.
Photosynthesis & Respiration
Introduction to PHOTOSYNTHESIS.
Chapter 8 Photosynthesis
All cells need chemical energy
Big Idea Photosynthesis converts the Sun’s energy into chemical energy, while cellular respiration uses chemical energy to carry out life function.
Chapter 8 Photosynthesis Part 1
CELLULAR ENERGY Unit 4 Chapter 8.
Chapter 8 Cellular Energy
Photosynthesis.
Chapter 8 Cellular Energy.
Chapter 8 Cellular Energy.
GRADING RUBRIC WKS: Unit 3 Study Guide.
Transformation of Energy
Photosynthesis + Cellular Respiration
Cell Energy & Photosynthesis
Cell Energy & Photosynthesis
ATP Photosynthesis Cellular Respiration.
Cell Energy & Photosynthesis
Photosynthesis and Cellular Respiration
Bell Work! What is the Equation for photosynthesis?
How Organisms Obtain Energy
Presentation transcript:

CHAPTER 8 CELLULAR ENERGY

SECTION 8.1 – HOW ORGANISMS OBTAIN ENERGY MAIN IDEA – All living organisms use energy to carry out all biological processes. QUESTIONS: What is energy? Why do living things need energy? How do humans obtain energy?

TRANSFORMATION OF ENERGY Chemical reactions and processes in your cells are continuous, even when you don’t think you are using any energy. Macromolecules are assembled and broken down, substances are transported across cell membranes and genetic instructions are sent. All require energy Energy is the ability to do work.

LAWS OF THERMODYNAMICS 1st law of thermodynamics is the law of conservation of energy, which states that energy can be converted from one form to another, but cannot be created nor destroyed.

AUTOTROPHS AND HETEROTROPHS Autotrophs make their own food using energy from the sun. Convert light energy from the sun into chemical energy. Heterotrophs need to eat food to obtain energy

METABOLISM Metabolism is all of the chemical reactions in a cell. ATP: THE UNIT OF CELLULAR ENERGY Adenosine triphosphate (ATP) is the most important biological molecule that provides chemical energy.

ATP STRUCTURE ATP is a multipurpose storehouse of chemical energy that is used by cells in a variety of reactions. Most abundant energy carrier molecule in cells & found in all types of organisms. ATP is a nucleotide made up of a adenine base, a ribose sugar, and 3 phosphate groups. QUESTION: What macromolecule group does ATP belong in?

ATP FUNCTION ATP’s function is to release energy when the bond between the 2nd and 3rd phosphate groups are broken Forms adenosine diphosphate (ADP) and a free phosphate group Energy is released

SECTION 8.2 – PHOTOSYNTHESIS MAIN IDEA – Light energy is trapped and converted into chemical energy during photosynthesis. QUESTIONS: What is the benefit of photosynthesis for humans? How does photosynthesis benefit plants?

light OVERVIEW OF PHOTOSYNTHESIS Photosynthesis is a process where light energy is converted into chemical energy. Chemical equation for photosynthesis is: light 6CO2 + 6H2O C6H12O6 + 6O2 Photosynthesis occurs in 2 phases: Phase 1 – light dependent reactions – where light energy is absorbed and converted into chemical energy in the form of ATP and NADPH Phase 2 – light independent reactions – where the ATP and NADPH that was made in phase one are used to make glucose. After glucose is produced it can be joined with other simple sugars to form larger molecules like starches Can also make proteins, lipids, and nucleic acids.

PHASE 1 – LIGHT REACTIONS Chloroplasts capture light energy in photosynthesis. Mainly found in the cells of leaves. Disk-shaped organelles that contain 2 main compartments essential for photosynthesis. Thylakoids – flattened, saclike membranes that are arranged in stacks called grana Light dependent reactions take place within the thylakoids. Stroma are fluid filled spaces outside the grana. Light independent reactions in phase 2 take place here. Pigments are light absorbing colored molecules that are found in the thylakoid membranes of the chloroplasts. Different colored pigments absorb specific wavelengths of light. Chlorophylls Carotenoids

PHASE 2: THE CALVIN CYCLE In the Calvin Cycle energy gets stored in organic molecules like glucose.

SECTION 8.3 – CELLULAR RESPIRATION MAIN IDEA – Living organisms obtain energy by breaking down organic molecules during cellular respiration QUESTION: Is air the same as oxygen? If it is not the same, how is air different from oxygen?

OVERVIEW OF CELLULAR RESPIRATION Organisms obtain energy by a process called cellular respiration. During cellular respiration electrons are collected from carbon compounds, like glucose, and use that energy to make ATP. ATP is used to provide energy for cells to do work. Equation for cellular respiration is the opposite of the equation for photosynthesis. C6H12O6 + 6O2 6CO2 + 6H2O Cellular respiration has 2 parts: Glycolysis Anaerobic process (does not require oxygen) Aerobic respiration (Requires oxygen) Includes: Krebs Cycle Electron transport

GLYCOLYSIS Glycolysis is the process where glucose is broken down in the cytoplasm. 2 ATP molecules are required to start the reactions. Produces: 2 molecules of ATP and 2 molecules of NADH for each molecule of glucose that is broken down. 2 pyruvate molecules

KREBS CYCLE The 2 pyruvate molecules are transported to the mitochondria. In the mitochondria with the help of oxygen the pyruvate is broken down into: 6 CO2 2 ATP 8 NADH 2 FADH2

ELECTRON TRANSPORT Electron transport is the final step in the breakdown of glucose. Electrons move along the mitochondrial membrane from one protein to another. The electron transport produces: 32 ATP In eukaryotes one molecule of glucose yields 36 ATPS under ideal conditions.

PHOTOSYNTHESIS AND CELLULAR RESPIRATION Photosynthesis and cellular respiration are 2 important metabolic pathways that cells use to obtain energy. Photosynthesis products are oxygen and glucose, but these are the reactants for cellular respiration Cellular respiration products are carbon dioxide and water, but these are the reactants for photosynthesis