Angles Formed by Parallel Lines and Transversals

Slides:



Advertisements
Similar presentations
Proving Lines Parallel
Advertisements

Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Use Parallel Lines and Transversals 3-2
Holt McDougal Geometry 3-3 Proving Lines Parallel Bellringer State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°,
Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°, then A and B are complementary. 3. If AB + BC =
Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If m  A + m  B = 90°, then  A and  B are complementary. 3. If AB.
Holt Geometry 3-6 Perpendicular Lines 3-6 Perpendicular Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Holt McDougal Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
Proving Lines Parallel
Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5
3-3 Parallel Lines and Transversals Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt McDougal Geometry 3-2 Angles Formed by Parallel Lines and Transversals Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5 4.
Warm Up Identify each angle pair. (yes you should draw the diagram) 1. 1 and 3 2. 3 and 6 3. 4 and 5 4. 6 and 7 same-side int s corr. s alt.
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Holt McDougal Geometry 3-3 Proving Lines Parallel Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°,
Proving Lines Parallel Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°, then A and B are complementary.
Angles Formed by Parallel Lines and Transversals 3-2
Holt Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry.
Holt McDougal Geometry 3-4 Perpendicular Lines Warm Up Solve each inequality. 1. x – 5 < x + 1 < x Solve each equation. 3. 5y = x + 15 = 90.
Holt Geometry 3-2 Angles Formed by Parallel Lines and Transversals 3-2 Angles Formed by Parallel Lines and Transversals Holt Geometry Warm Up Warm Up Lesson.
Holt McDougal Geometry 3-4 Perpendicular Lines 3-4 Perpendicular Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
3-4 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Angles Formed by Parallel Lines and Transversals 3-2
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Angles Formed by Parallel Lines and Transversals 3-2
3.4 Perpendicular Lines 3-4 Perpendicular Lines Holt McDougal Geometry
Proving Lines Parallel
Proving Lines Parallel
Angles Formed by Parallel Lines and Transversals 3-2
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
21.1 Objective Prove and use theorems about the angles formed by parallel lines and a transversal.
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Drill: Wednesday, 11/9 State the converse of each statement.
Proving Lines Parallel
Angles Formed by Parallel Lines and Transversals 3-2
Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Proving Lines Parallel
Drill: Monday, 11/7 Identify each angle pair. 1. 1 and 3
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Objectives Identify parallel, perpendicular, and skew lines.
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Objective Prove and use theorems about the angles formed by parallel lines and a transversal.
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Angles Formed by Parallel Lines and Transversals 3-2
Presentation transcript:

Angles Formed by Parallel Lines and Transversals 21.1 Warm Up Lesson Presentation Lesson Quiz Holt McDougal Geometry Holt Geometry

Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5 21.1 Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5 4. 6 and 7 corr. s alt. int. s alt. ext. s same-side int s

21.1 Objective Prove and use theorems about the angles formed by parallel lines and a transversal.

21.1

Example 1: Using the Corresponding Angles Postulate 21.1 Example 1: Using the Corresponding Angles Postulate Find each angle measure. A. mECF x = 70 Corr. s Post. mECF = 70° B. mDCE 5x = 4x + 22 Corr. s Post. x = 22 Subtract 4x from both sides. mDCE = 5x = 5(22) Substitute 22 for x. = 110°

21.1 Example 2 Find mQRS. x = 118 Corr. s Post. mQRS + x = 180° *Def. of Linear Pair* mQRS = 180° – x Subtract x from both sides. = 180° – 118° Substitute 118° for x. = 62°

21.1 If a transversal is perpendicular to two parallel lines, all eight angles are congruent. Helpful Hint

21.1 Remember that postulates are statements that are accepted without proof. Since the Corresponding Angles Postulate is given as a postulate, it can be used to prove the next three theorems.

21.1

21.1 Example 3 Find each angle measure. A. mEDG mEDG = 75° Alt. Ext. s are Congruent. B. mBDG x – 30° = 75° Alt. Ext. s are congruent. x = 105 Add 30 to both sides. mBDG = 105°

21.1 Example 4 Find x and y in the diagram. By the Alternate Interior Angles Theorem, (5x + 4y)° = 55°. By the Corresponding Angles Postulate, (5x + 5y)° = 60°. 5x + 5y = 60 –(5x + 4y = 55) y = 5 Subtract the first equation from the second equation. Substitute 5 for y in 5x + 5y = 60. Simplify and solve for x. 5x + 5(5) = 60 x = 7, y = 5

21.1 Lesson Quiz State the theorem or postulate that is related to the measures of the angles in each pair. Then find the unknown angle measures. 1. m1 = 120°, m2 = (60x)° 2. m2 = (75x – 30)°, m3 = (30x + 60)° Alt. Ext. s Thm.; m2 = 120° Corr. s Post.; m2 = 120°, m3 = 120° 3. m3 = (50x + 20)°, m4= (100x – 80)° 4. m3 = (45x + 30)°, m5 = (25x + 10)° Alt. Int. s Thm.; m3 = 120°, m4 =120° Same-Side Int. s Thm.; m3 = 120°, m5 =60°

Proving Lines Parallel 21.2 Proving Lines Parallel Warm Up Lesson Presentation Lesson Quiz Holt McDougal Geometry Holt Geometry

21.2 Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°, then A and B are complementary. 3. If AB + BC = AC, then A, B, and C are collinear. If a + c = b + c, then a = b. If A and  B are complementary, then mA + mB =90°. If A, B, and C are collinear, then AB + BC = AC.

21.2 Objective Use the angles formed by a transversal to prove two lines are parallel.

21.2 Recall that the converse of a theorem is found by exchanging the hypothesis and conclusion. The converse of a theorem is not automatically true. If it is true, it must be stated as a postulate or proved as a separate theorem.

21.2

21.2 The Converse of the Corresponding Angles Postulate is used to construct parallel lines. The Parallel Postulate guarantees that for any line ℓ, you can always construct a parallel line through a point that is not on ℓ.

21.2

21.2 Lesson Quiz: Part I Name the postulate or theorem that proves p || r. 1. 4  5 Conv. of Alt. Int. s Thm. 2. 2  7 Conv. of Alt. Ext. s Thm. 3. 3  7 Conv. of Corr. s Post. 4. 3 and 5 are supplementary. Conv. of Same-Side Int. s Thm.

Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz 21.3 Holt McDougal Geometry Holt Geometry

21.3 Objective Prove and apply theorems about perpendicular lines.

21.3 Vocabulary perpendicular bisector distance from a point to a line

21.3 The perpendicular bisector of a segment is a line perpendicular to a segment at the segment’s midpoint. The shortest segment from a point to a line is perpendicular to the line. This fact is used to define the distance from a point to a line as the length of the perpendicular segment from the point to the line.

Example 5: Distance From a Point to a Line 21.3 Example 5: Distance From a Point to a Line A. Name the shortest segment from point A to BC. AP B. Write and solve an inequality for x. AC > AP AP is the shortest segment. x – 8 > 12 Substitute x – 8 for AC and 12 for AP. + 8 Add 8 to both sides of the inequality. x > 20

21.3 HYPOTHESIS CONCLUSION

21.3 Example 6 Solve to find x and y in the diagram. x = 9, y = 4.5