GENERATION OF WIDELY TUNABLE FOURIER-TRANSFORM-LIMITED PULSED TERAHERTZ RADIATION USING NARROWBAND NEAR-INFRARED LASER RADIATION Jinjun Liu, Christa Haase,

Slides:



Advertisements
Similar presentations
The efficient generation of anti- Stokes radiation at multiwave forward and backward stimulated Raman scattering Victor G. Bespalov, Russian Research Center.
Advertisements

Simultaneously Stokes and anti-Stokes Raman amplification in silica fiber Victor G. Bespalov Russian Research Center "S. I. Vavilov State Optical Institute"
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Sub-Doppler Resolution Spectroscopy of the fundamental band of HCl with an Optical Frequency Comb ○ K. Iwakuni, M. Abe, and H. Sasada Department of Physics,
Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A. Miller EXPERIMENTAL PROGRESS FOR HIGH RESOLUTION CAVITY RINGDOWN SPECTROSCOPY OF JET-
Coherent Radiation from High-Current Electron Beams of a Linear Accelerator and Its Applications S. Okuda ISIR, Osaka Univ Research Institute.
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
Optimizing SHG Efficiency
Ruby Laser Crystal structure of sapphire: -Al2O3 (aluminum oxide). The shaded atoms make up a unit cell of the structure. The aluminum atom inside the.
TeraHertz Kerr effect in GaP crystal
Laser Offset Stabilization for Terahertz (THz) Frequency Generation Kevin Cossel Dr. Geoff Blake California Institute of Technology Kevin Cossel Dr. Geoff.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
References Acknowledgements This work is funded by EPSRC 1.Paul Siddons, Charles S. Adams, Chang Ge & Ifan G. Hughes, “Absolute absorption on rubidium.
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
First year talk Mark Zentile
Building a FT-FIR Towards a THz version of the Flygare R. Braakman 1,*) ; M.J. Kelley 1), K. Cossel 1), G.A. Blake 2) 1) Division of Chemistry & Chemical.
Jinjun Liu,1 Edcel J. Salumbides,2
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
Ultrabroadband terahertz generation using DAST single crystal
High-speed ultrasensitive measurements of trace atmospheric species 250 spectra in 0.7 s David A. Long A. J. Fleisher, D. F. Plusquellic, J. T. Hodges.
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
3 – 3.5  MIR CRDS 1 – 1.5  NIR CRDS  m -HV O2O2 N2N2 OH X a A B X X ~
High efficiency generation and detection of terahertz pulses using laser pulses at tele- communication wavelengths A.Schneider et al. OPTICS EXPRESS 5376/Vol.14,No.12(2006)
IR/THz Double Resonance Spectroscopy in the Pressure Broadened Regime: A Path Towards Atmospheric Gas Sensing Sree H. Srikantaiah Dane J. Phillips Frank.
Controlling the dynamics time scale of a diode laser using filtered optical feedback. A.P.A. FISCHER, Laboratoire de Physique des Lasers, Universite Paris.
Ultrabroadband detection of THz radiation and the sensitivity estimation of photoconductive antenna Itoh lab Michitaka Bitoh H. Shimosato et al. Ultrafast.
A New Spectrometer For High Resolution Measurements of THz Transitions in Cold Carbon Clusters Martin Philipp, Michael Caris, Thomas Giesen, Stephan Schlemmer.
Tunable Mid-IR Frequency Comb for Molecular Spectroscopy
Electro-optic Effect made simple? David A. Reis FOCUS Center and Department of Physics, University. of Michigan.
Mid-IR ethene detection using a quasi-phase matched LiNbO 3 waveguide 64th OSU International Symposium on Molecular Spectroscopy 23 rd June 2009.
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
High-resolution threshold photoionization and photoelectron spectroscopy of propene and 2-butyne Julie M. Michaud, Konstantina Vasilatou and Frédéric Merkt.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Generation and detection of ultrabroadband terahertz radiation
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Terahertz Applications by THz Time Domain Spectroscopy
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
V. Sonnenschein, I. D. Moore, M. Reponen, S. Rothe, K.Wendt.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Ultrafast Terahertz Kerr Effect Spectroscopy: Detection of Intramolecular Vibrational Coherences Marco Allodi, Ian Finneran, Geoffrey Blake California.
Challenges and Opportunities Currently most pulsed THz systems are based on Ti-Sapphire laser systems with ZnTe crystals as THz emitters and detectors.
FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
California Institute of Technology
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Broadband High-resolution Spectroscopy with Fabry-Perot Quantum Cascade Lasers Yin Wang and Gerard Wysocki Department of Electrical Engineering Princeton.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Extending the principles of the Flygare: Towards a FT-THz spectrometer Rogier Braakman Chemistry & Chemical Engineering California Institute of Technology.
Frequency combs – evolutionary tree Overview Frequency Metrology Measuring Frequency Gaps Frequency Combs as Optical Synthesizers Time Domain Applicatons.
Date of download: 6/17/2016 Copyright © 2016 SPIE. All rights reserved. Standard pump-probe saturation spectroscopy with electronic feedback to the laser.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
Assignment Methods for High N Rydberg States of CaF Vladimir S. Petrovi ć, Emily E. Fenn, and Robert W. Field Massachusetts Institute of Technology International.
Multiplexed saturation spectroscopy with electro-optic frequency combs
Fiber Laser Preamplifier
A THz PHOTOMIXING SYNTHESIZER BASED ON A FIBER FREQUENCY COMB DEDICATED TO HIGH RESOLUTION SPECTROSCOPY OF ATMOSPHERIC COMPOUNDS Arnaud Cuisset, Laboratoire.
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
Two-Photon Absorption Spectroscopy of Rubidium
Electro-optic polymers for wideband THz-applications
Weston Aenchbacher1, Mira Naftaly2, and Richard Dudley2
Presentation transcript:

GENERATION OF WIDELY TUNABLE FOURIER-TRANSFORM-LIMITED PULSED TERAHERTZ RADIATION USING NARROWBAND NEAR-INFRARED LASER RADIATION Jinjun Liu, Christa Haase, and Frédéric Merkt Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland

Narrowband THz generation in DAST via DFG [1] K. Suizu, et. al., Opt. Lett. 32, 2885 (2007) [2] K. Suizu, et. al., Proc. of SPIE 6103, 61030A (2006) Difference Frequency Generation of ns laser pulses DAST (4’-dimethylamino-N-methyl-4-stilbazolium tosylate)

Experimental setup ν 2 (tunable) ν 1 (fixed) ν THz

DAST cut for phase matching c a b θ 40 o 50 o k polarization of THz (ac) polarization of 800nm (b)

THz output power Generated by the cut DAST crystal (thickness=1 mm) NIR peak power ~16 kW, 1/10 of the damage threshold Normalized by the transmission of the vacuum window (PE), the THz cut-on filter (Sapphire) of the detector and the black PE filter used to block NIR. _____ NIR polarization perpendicular to b axis, AOI=0 o ____ NIR polarization parallel to b axis, AOI=0 o NIR polarization parallel to b axis, AOI=10 o X10 (absorption efficiency & acceptance of the detector [3]) [3] M. Rochat, Ph.D. thesis, Université de Neuchâtel, Switzerland, 2002.

Optimization of output power at 7.5 THz Optimum crystal length

Comparison with other emitters LTG-GaAs photoconductive antenna: Low damage threshold Narrow frequency range: 0-2 THz Maximum output power: 0.3 THz ZnTe crystal Narrow frequency range: 0-3 THz Damage threshold: ~1 MW/cm 2 GaP crystal Narrow frequency range: peak ~8 THz Damage threshold: ~5 MW/cm 2 S. N. Orlov et al. Quantum Electron. 37, 36 (2007).

Comparison with other crystals crystal length peak power density damage threshold 340 μm0.23 MW/cm 2 ~3 MW/cm 2 1 mm0.23 MW/cm 2 ~3 MW/cm 2 1 mm0.23 MW/cm 2 ~1 MW/cm mm0.85 MW/cm 2 ~5 MW/cm 2

Simulation of THz generation Experimental Simulated / 10  DAST [4] F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M.S. Wong, P. Günter, Appl. Phys. Lett. 69 (1996) 13. [5] A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R.U.A. Khan, P. Günter, J. Opt. Soc. Am. B 23 (2006) [6] G. Knöpfle, R. Schlesser, R. Ducret, P. Günter, Nonlinear Opt. 9 (1995) 143. [7] M. Walther, K. Jensby, S.R. Keiding, H. Takahashi, H. Ito, Opt. Lett. 25 (2000) 911. [8] S. Follonier, M. Fierz, I. Biaggio, U. Meier, Ch. Bosshard, P. Günter, J. Opt. Soc. Am. B 19 (2002) [9] Ch. Bosshard, R. Spreiter, L. Degiorgi, P. Günter, Phys. Rev. B 66 (2002)  ZnTe [10] D.T.F. Marple, J. Appl. Phys. 35 (1964) 539. [11] T. Hattori, Y. Homma, A. Mitsuishi, M. Tacke, Opt. Commun. 7 (1973) 229.  GaP [12] M. Schall, M. Walther, P. Uhd Jepsen, Phys. Rev. B 64 (2001) [13] T. Hattori, K. Takeuchi, Opt. Expr. 15 (2007) [14] D.F. Parsons, P.D. Coleman, Appl. Opt. 10 (1971) [15] G.D. Boyd, T.J. Bridges, M.A. Pollack, E.H. Turner, Phys. Rev. Lett. 26 (1971) 387. [16] F.L. Madarasz, J.O. Dimmock, N. Dietz, K.J. Bachmann, J. Appl. Phys. 87 (2000) [17] T. Tanabe, K. Suto, J. Nishizawa, K. Saito, T. Kimura, Appl. Phys. Lett. 83 (2003) 237.

Measurement of bandwidth microwave mixer (downconversion) spectrum analyzer (BW=1 MHz) f =304GHz f LO ~304GHz f IF

Beat note and FFT microwave mixer (downconversion) spectrum analyzer (BW=1 MHz) f THz f LO f IF oscilloscope

Water absorption spectra

Pure rotational spectrum of OCS (2) MHz

Linewidth J ’=35  J ”=34 Center frequency = (8) THz [18] Absorption path length=1 m Pressure=0.5 mbar Δν pressure =4.33(15) MHz Δν Doppler, negligible FWHM~10 MHz Upper limit of Δν source =9 MHz [18] G.Yu. Golubiatnikov, A.V. Lapinov, A. Guarnieri, R. Knöchel, J. Mol. Spectrosc. 234 (2005) 190.

Pure rotational spectrum of HF J ’=4  J ”=3 Center frequency = THz [19] Δν Doppler =13 MHz FWHM=25 MHz Upper limit of Δν source =21 MHz [19] Nolt et al. J. Mol. Spectrosc. 125, 274 (1987)

Summary and outlook A new THz source with: wide tunability narrow bandwidth (~10MHz) high frequency accuracy enough output power for spectroscopy J. Liu and F. Merkt, Appl. Phys. Lett. 93, (2008) J. Liu, H. Schmutz and F. Merkt, J. Mol. Spectrosc. (2009), in press doi: /j.jms Extension to higher frequency region (>11 THz). Frequency locking of one of the ring lasers to Doppler-free I 2 transitions. Future spectroscopy Direct absorption spectroscopy using multipass cells. THz-UV double-resonance spectroscopy under jet- cooled conditions.

Acknowledgements Prof. Dr. Martin Quack (Laboratorium für Physikalische Chemie, ETH Zürich) Prof. Dr. Peter Günter, Dr. Arno Schneider (Institute for Quantum Electronics, ETH Zürich)

DAST for THz generation DAST (4’-dimethylamino-N-methyl-4-stilbazolium tosylate)  large birefringence (Δn = 800 nm)  large nonlinear optical susceptibilities: χ 111 = 1230±130; χ 122 = 166±16; χ 311 = 239±32; χ 212 = 135± nm)  large electro-optic coefficients: r 111 = 77±8; r 221 = 42±4; r 113 = 15±2; r 122 = 17.0± nm) DAST (4’-dimethylamino-N-methyl-4-stilbazolium tosylate)  large birefringence (Δn = 800 nm)  large nonlinear optical susceptibilities: χ 111 = 1230±130; χ 122 = 166±16; χ 311 = 239±32; χ 212 = 135± nm)  large electro-optic coefficients: r 111 = 77±8; r 221 = 42±4; r 113 = 15±2; r 122 = 17.0± nm) F. Pan, et. al., Appl. Phys. Lett., 69, 13 (1996) A. Schneider, et. al., J. Opt. Soc. Am. B, 23, 1822 (2006) Optical Rectification of fs laser pulses

Frequency stabilization Coherent Ti:Sa Ring Laser PD1 PD2 Lock-in / Piezo Driver/ Oscillator / RF Rriver Stabilized He-Ne AOM Lock-in / Oscillator PZTConfocal Fabry-Perot Cavity

Phase mismatching of DAST Taniuchi et al. Electro. Lett. 36, 1414 (2000) Han et al. Opt. Lett. 25, 675 (2000)

Consideration in DFG

Looking for phase matching 1.Construct index of refraction ellipsoid; 2.Define wave vector by polar angle and azimuthal angle ; 3.Determine the intersection of the ellipsoid and the plane normal to, an ellipse with major axis n max and minor axis n min. 4.For nonzero components of the nonlinear susceptibility tensor, calculate the coherent lengths Note that: 5.Maximize as a function of and. n2n2 n3n3 n1n1 n min n max Ferguson, Math. Geol. 11, 329, (1979)

NIR and THz properties of DAST Pan et al. Appl. Phys. Lett. 69, 13 (1996) M. Walther et al. Opt. Lett. 25, 911 (2000) Bosshard et al. Phys. Rev. B 66, (2002). ?... n 1 =2.43 n 2 =1.72 n 3 =1.72 α THz =50 cm -1 n 1 =2.43 n 2 =1.72 n 3 =1.72 α THz =50 cm -1

Calculated THz peak power using the cut DAST crystal (see above) pumped by 5kW NIR peak power with different angle between the wave vector (k) and the c- axis of the crystal. The calculation is based on measured indices of refraction and χ 122 component of the nonlinear susceptibility tensor. Predicted THz Radiation

Calculated THz peak power as a function of θ. Note the log scale. Predicted tuning curves

Conversion efficiency (top) Measured THz peak power as a function of NIR peak power used to pump the DAST crystal. The error bar for the THz peak power is estimated to be 10% of the absolute value. The dotted line represents the least-squares fit assuming a quadratic relationship. (bottom) THz conversion efficiency as a function of NIR peak power. The dotted line represents a linear fit. (top) Measured THz peak power as a function of NIR peak power used to pump the DAST crystal. The error bar for the THz peak power is estimated to be 10% of the absolute value. The dotted line represents the least-squares fit assuming a quadratic relationship. (bottom) THz conversion efficiency as a function of NIR peak power. The dotted line represents a linear fit.

Outline Motivation (generation of THz radiation in the DAST crystal via DFG) Experimental setup Phase-matching condition Comparison of different THz emitters Measurement of bandwidth Proof-of-principle spectroscopic measurement Conclusions and outlook [2] A. de Lange, E. Reinhold, and W. Ubachs, Phys. Rev. A 65, (2002). [3] Y. P. Zhang, C. H. Cheng, J. T. Kim, J. Stanojevic, and E. E. Eyler, Phys. Rev. Lett. 92, (2004). [4] L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995).