4-6 Triangle Congruence: SSS and SAS Section 4.6 Holt Geometry

Slides:



Advertisements
Similar presentations
4-5 Warm Up Lesson Presentation Lesson Quiz
Advertisements

4-5 Warm Up Lesson Presentation Lesson Quiz
4-7 Section 4.7 Triangle Congruence: ASA, AAS, and HL Holt Geometry
4-6 Warm Up Lesson Presentation Lesson Quiz
4-5 Warm Up Lesson Presentation Lesson Quiz
4-5 Warm Up Lesson Presentation Lesson Quiz
Objective SWBAT prove triangles congruent by using ASA and AAS.
4-6 Warm Up Lesson Presentation Lesson Quiz
Triangle Congruence: SSS and SAS
CONGRUENT TRIANGLES.
4-3, 4-4, and 4-5 Congruent Triangles Warm Up Lesson Presentation
Warm Up 1. Name the angle formed by AB and AC. 2.Name the three sides of ABC. 3. ∆ QRS  ∆ LMN. Name all pairs of congruent corresponding parts. Possible.
Warm Up Lesson Presentation Lesson Quiz.
Angle Relationships in Triangles Holt Geometry Lesson Presentation Lesson Presentation Holt McDougal Geometry.
Do Now 1. ∆ QRS  ∆ LMN. Name all pairs of congruent corresponding parts. 2.Find the equation of the line through the points (3, 7) and (5, 1) QR  LM,
1. Name the angle formed by AB and AC.
Triangle Similarity: 7-3 AA, SSS, and SAS Warm Up Lesson Presentation
Warm Up 1. Name the angle formed by AB and AC.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Holt McDougal Geometry 4-5 Triangle Congruence: SSS and SAS 4-5 Triangle Congruence: SSS and SAS Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Chapter congruent triangle : SSS and SAS. SAT Problem of the day.
4-2 Triangle Congruence by SSS and SAS. Side-Side-Side (SSS) Postulate If the three sides of one triangle are congruent to the three sides of another.
Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS and SAS. Objectives.
Example: Using Corresponding Parts of Congruent Triangles Given: ∆ABC  ∆DBC. Find the value of x.  BCA and  BCD are rt.  s.  BCA   BCD m  BCA =
4-5 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: HL
4.6 Congruent Triangles SSS and SAS. Example 1: Verifying Triangle Congruence Show that the triangles are congruent for the given value of the variable.
Triangle Congruence by SSS & SAS Objective: To Determine whether triangles are congruent using SSS and SAS postulate.
Warm Up Solve each proportion If ∆QRS ~ ∆XYZ, identify the pairs of congruent angles and write 3 proportions using pairs of corresponding.
Holt Geometry 4-4 Triangle Congruence: SSS and SAS Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Holt McDougal Geometry 4-5 Triangle Congruence: SSS and SAS 4-5 Triangle Congruence: SSS and SAS Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Proving Triangles are Congruent: SSS, SAS
CONFIDENTIAL 1 Geometry Triangle Congruence SSS and SAS.
Objectives Apply ASA, AAS, and HL to construct triangles and to solve problems. Prove triangles congruent by using ASA, AAS, and HL.
Unit 4: Triangle Congruence 4.4 Triangle Congruence: SAS.
Holt McDougal Geometry 4-6 Triangle Congruence: ASA, AAS, and HL 4-6 Triangle Congruence: ASA, AAS, and HL Holt Geometry Warm Up Warm Up Lesson Presentation.
4-3 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Geometry A Bellwork 3) Write a congruence statement that indicates that the two triangles are congruent. A D B C.
Objectives Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS and SAS.
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Triangle Congruence: SSS and SAS
5.5 Vocabulary triangle rigidity included angle
Pearson Unit 1 Topic 4: Congruent Triangles 4-2: Triangle Congruence by SSS and SAS Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Warm Up 1. Name the angle formed by AB and AC.
Learning Targets I will apply the SSS and SAS Postulates to construct triangles and solve problems. I will prove triangles congruent by using the SSS and.
Sec 4.6: Triangle Congruence: SSS and SAS
5.3 Vocabulary included angle triangle rigidity
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objectives Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS and SAS.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Module 1 Topic D – Lesson 24 Warm Up
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objectives Apply SAS to construct triangles and solve problems.
Congruent Triangles. Congruence Postulates.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objectives Apply SSS to construct triangles and solve problems.
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Presentation transcript:

4-6 Triangle Congruence: SSS and SAS Section 4.6 Holt Geometry Holt McDougal Geometry

Warm Up 1. Name the angle formed by AB and AC. 2. Name the three sides of ABC. 3. ∆QRS  ∆LMN. Name all pairs of congruent corresponding parts.

Adjacent triangles share a side, so you can apply the Reflexive Property to get a pair of congruent parts. Remember!

Use SSS to explain why ∆ABC  ∆DBC.

Use SSS to explain why ∆ABC  ∆CDA.

An included angle is an angle formed by two adjacent sides of a polygon. B is the included angle between sides AB and BC.

It can also be shown that only two pairs of congruent corresponding sides are needed to prove the congruence of two triangles if the included angles are also congruent.

The letters SAS are written in that order because the congruent angles must be between pairs of congruent corresponding sides. Caution

The diagram shows part of the support structure for a tower The diagram shows part of the support structure for a tower. Use SAS to explain why ∆XYZ  ∆VWZ.

Use SAS to explain why ∆ABC  ∆DBC.

Show that the triangles are congruent for the given value of the variable. ∆MNO  ∆PQR, when x = 5.

Show that the triangles are congruent for the given value of the variable. ∆STU  ∆VWX, when y = 4.

Show that ∆ADB  ∆CDB, t = 4.

Given: BC ║ AD, BC  AD Prove: ∆ABD  ∆CDB Statements Reasons

Given: QP bisects RQS. QR  QS Prove: ∆RQP  ∆SQP Statements Reasons

Given: B is the midpoint of DC, AD = AC Prove: ΔADB = ΔACB

1. Show that ∆ABC  ∆DBC, when x = 6. Lesson Quiz: Part I 1. Show that ∆ABC  ∆DBC, when x = 6. 26° Which postulate, if any, can be used to prove the triangles congruent? 3. 2.

4. Given: PN bisects MO, PN  MO Lesson Quiz: Part II 4. Given: PN bisects MO, PN  MO Prove: ∆MNP  ∆ONP Reasons Statements