Chapter 6 Discrete Probability Distributions.

Slides:



Advertisements
Similar presentations
Random Variables A random variable is a variable (usually we use x), that has a single numerical value, determined by chance, for each outcome of a procedure.
Advertisements

Discrete Random Variables
Chapter Six Discrete Probability Distributions 6.1 Probability Distributions.
probability distributions
Sections 4.1 and 4.2 Overview Random Variables. PROBABILITY DISTRIBUTIONS This chapter will deal with the construction of probability distributions by.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. CHAPTER 6 Discrete Probability Distributions.
Chapter 4 Probability Distributions
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 5-2.
Slide 1 Statistics Workshop Tutorial 4 Probability Probability Distributions.
Lecture Slides Elementary Statistics Twelfth Edition
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Edited by.
Slide 1 Statistics Workshop Tutorial 7 Discrete Random Variables Binomial Distributions.
Objective: Objective: Use experimental and theoretical distributions to make judgments about the likelihood of various outcomes in uncertain situations.
Chapter Four Discrete Probability Distributions 4.1 Probability Distributions.
Section 5.2 Random Variables.
5-2 Probability Distributions This section introduces the important concept of a probability distribution, which gives the probability for each value of.
1 Overview This chapter will deal with the construction of probability distributions by combining the methods of Chapter 2 with the those of Chapter 4.
Chapter 5 Probability Distributions
Chapter Six Discrete Probability Distributions 6.1 Probability Distributions.
Chapter Discrete Probability Distributions © 2010 Pearson Prentice Hall. All rights reserved 3 6.
Statistics 5.2.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Review and Preview This chapter combines the methods of descriptive statistics presented in.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 5 Discrete Probability Distributions 5-1 Review and Preview 5-2.
Slide 1 Copyright © 2004 Pearson Education, Inc..
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
1 Chapter 4. Section 4-1 and 4-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 11 Section 1 – Slide 1 of 34 Chapter 11 Section 1 Random Variables.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
DISCRETE PROBABILITY DISTRIBUTIONS Chapter 5. Outline  Section 5-1: Introduction  Section 5-2: Probability Distributions  Section 5-3: Mean, Variance,
Chapter Discrete Probability Distributions © 2010 Pearson Prentice Hall. All rights reserved 3 6.
1 Chapter 4. Section 4-1 and 4-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Chapter 5: The Binomial Probability Distribution and Related Topics Section 1: Introduction to Random Variables and Probability Distributions.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 5-2 Random Variables.
IT College Introduction to Computer Statistical Packages Eng. Heba Hamad 2010.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Discrete Probability Distributions 6.
Statistics Probability Distributions – Part 1. Warm-up Suppose a student is totally unprepared for a five question true or false test and has to guess.
Chapter Discrete Probability Distributions © 2010 Pearson Prentice Hall. All rights reserved 3.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
Sections 5.1 and 5.2 Review and Preview and Random Variables.
Lesson Discrete Random Variables. Objectives Distinguish between discrete and continuous random variables Identify discrete probability distributions.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 5-1 Review and Preview.
Chapter Discrete Probability Distributions © 2010 Pearson Prentice Hall. All rights reserved 3 6.
Discrete Random Variables
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation.
Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 1 Probability Distributions Chapter 4 M A R I O F. T R I O L A Copyright © 1998,
Slide 1 Copyright © 2004 Pearson Education, Inc. Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions.
Probability Distributions ( 확률분포 ) Chapter 5. 2 모든 가능한 ( 확률 ) 변수의 값에 대해 확률을 할당하는 체계 X 가 1, 2, …, 6 의 값을 가진다면 이 6 개 변수 값에 확률을 할당하는 함수 Definition.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Discrete Probability Distributions 6.
Discrete Random Variables Section 6.1. Objectives Distinguish between discrete and continuous random variables Identify discrete probability distributions.
Discrete Probability Distributions
Lecture Slides Elementary Statistics Eleventh Edition
Random Variables and Probability Distribution (2)
Discrete Probability Distributions
Chapter 5 Probability 5.2 Random Variables 5.3 Binomial Distribution
3 6 Chapter Discrete Probability Distributions
Discrete Probability Distributions
3 6 Chapter Discrete Probability Distributions
Discrete Probability Distributions
Discrete Probability Distributions
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Random Variables Random variable a variable (typically represented by x) that takes a numerical value by chance. For each outcome of a procedure, x takes.
Lecture Slides Essentials of Statistics 5th Edition
Lecture Slides Essentials of Statistics 5th Edition
STATISTICS INFORMED DECISIONS USING DATA
Addition Rule Objectives
Presentation transcript:

Chapter 6 Discrete Probability Distributions

Definitions Random variable a variable (typically represented by x) that has a single numerical value, determined by chance, for each outcome of a procedure Discrete random variable either a finite number of values or countable number of values, where “countable” refers to the fact that there might be infinitely many values, but they result from a counting process Continuous random variable infinitely many values, and those values can be associated with measurements on a continuous scale in such a way that there are no gaps or interruptions page 201 of Elementary Statistics, 10th Edition

EXAMPLE. Distinguishing Between Discrete and EXAMPLE Distinguishing Between Discrete and Continuous Random Variables Determine whether the following random variables are discrete or continuous. State possible values for the random variable. The number of light bulbs that burn out in a room of 10 light bulbs in the next year. (b) The number of leaves on a randomly selected Oak tree. (c) The length of time between calls to 911. Discrete; x = 0, 1, 2, …, 10 Discrete; x = 0, 1, 2, … Continuous; t > 0

Definitions Probability distribution a description that gives the probability for each value of the random variable; often expressed in the format of a graph, table, or formula This chapter deals exclusively with discrete random variables - experiments where the data observed is a ‘countable’ value. Give examples. Following chapters will deal with continuous random variables. Page 201 of Elementary Statistics, 10th Edition

EXAMPLE A Discrete Probability Distribution The table to the right shows the probability distribution for the random variable X, where X represents the number of DVDs a person rents from a video store during a single visit. x P(x) 0.06 1 0.58 2 0.22 3 0.10 4 0.03 5 0.01

Rules for Probability Distribution P(x) = 1 where x assumes all possible values.  0  P(x)  1 for every individual value of x. Page 203 of Elementary Statistics, 10th Edition

EXAMPLE Identifying Probability Distributions Is the following a probability distribution? x P(x) 0.16 1 0.18 2 0.22 3 0.10 4 0.30 5 0.04

A probability histogram is a histogram in which the horizontal axis corresponds to the value of the random variable and the vertical axis represents the probability of that value of the random variable.

Graphs The probability histogram is very similar to a relative frequency histogram, but the vertical scale shows probabilities. page 202 of Elementary Statistics, 10th Edition Probability Histograms relate nicely to Relative Frequency Histograms of Chapter 2, but the vertical scale shows probabilities instead of relative frequencies based on actual sample results Observe that the probabilities of each random variable is also the same as the AREA of the rectangle representing the random variable. This fact will be important when we need to find probabilities of continuous random variables - Chapter 6.

EXAMPLE Drawing a Probability Histogram P(x) 0.06 1 0.58 2 0.22 3 0.10 4 0.03 5 0.01 Draw a probability histogram of the probability distribution to the right, which represents the number of DVDs a person rents from a video store during a single visit.

Standard Deviation of a Probability Distribution Mean, Variance and Standard Deviation of a Probability Distribution µ =  [x • P(x)] Mean 2 =  [(x – µ)2 • P(x)] Variance  =  [(x – µ)2 • P(x)] Standard Deviation In Chapter 3, we found the mean, standard deviation,variance, and shape of the distribution for actual observed experiments. The probability distribution and histogram can provide the same type information. These formulas will apply to ANY type of probability distribution as long as you have have all the P(x) values for the random variables in the distribution. In section 4 of this chapter, there will be special EASIER formulas for the special binomial distribution. The TI-83 and TI-83 Plus calculators can find the mean, standard deviation, and variance in the same way that one finds those values for a frequency table. With the TI-82, TI-81, and TI-85 calculators, one would have to multiply all decimal values in the P(x) column by the same factor so that there were no decimals and proceed as usual. Page 204 of Elementary Statistics, 10th Edition

EXAMPLE Computing the Mean of a Discrete Random Variable Compute the mean of the probability distribution to the right, which represents the number of DVDs a person rents from a video store during a single visit. x P(x) 0.06 1 0.58 2 0.22 3 0.10 4 0.03 5 0.01

E =  [x • P(x)] Definition Because the mean of a random variable represents what we would expect to happen in the long run, it is also called the expected value, E(X), of the random variable. The expected value of a discrete random variable is denoted by E, and it represents the average value of the outcomes. It is obtained by finding the value of  [x • P(x)]. Also called expectation or mathematical expectation Plays a very important role in decision theory page 208 of Elementary Statistics, 10th Edition E =  [x • P(x)]

EXAMPLE Computing the Expected Value of a Discrete Random Variable A term life insurance policy will pay a beneficiary a certain sum of money upon the death of the policy holder. These policies have premiums that must be paid annually. Suppose a life insurance company sells a $250,000 one year term life insurance policy to a 49-year-old female for $530. According to the National Vital Statistics Report, Vol. 47, No. 28, the probability the female will survive the year is 0.99791. Compute the expected value of this policy to the insurance company. x P(x) $530 0.99791 $530 – $250,000 = -$249,470 1- 0.99791 = 0.00209 Survives Does not survive E(X) = 530(0.99791) + (-249,470)(0.00209) = $7.50

EXAMPLE. Computing the Variance and Standard Deviation EXAMPLE Computing the Variance and Standard Deviation of a Discrete Random Variable x P(x) 0.06 1 0.58 2 0.22 3 0.10 4 0.03 5 0.01 Compute the variance and standard deviation of the following probability distribution which represents the number of DVDs a person rents from a video store during a single visit. x P(x) 0.06 -1.43 2.0449 0.122694 1 0.58 -0.91 0.8281 0.480298 2 0.22 -1.27 1.6129 0.354838 3 0.1 -1.39 1.9321 0.19321 4 0.03 -1.46 2.1316 0.063948 5 0.01 -1.48 2.1904 0.021904

Section 6.2 The Binomial Probability Distribution Next: Section 6.2 The Binomial Probability Distribution