D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument X-ray Pump-Probe Instrument D. M. Fritz Pump-probe Experiments System.

Slides:



Advertisements
Similar presentations
Mostly by Gwyn Williams and the JLab Team, Presented by D. Douglas Working Group 4 Diagnostics & Synchronization Requirements Where we are and what needs.
Advertisements

Design and Experimental Considerations for Multi-stage Laser Driven Particle Accelerator at 1μm Driving Wavelength Y.Y. Lin( 林元堯), A.C. Chiang (蔣安忠), Y.C.
Soft X-ray Self-Seeding
Femtosecond Pump / Probe Operation and Plans at the LCLS
05/03/2004 Measurement of Bunch Length Using Spectral Analysis of Incoherent Fluctuations Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
EOS at SPPS Adrian L Cavalieri, David M Fritz, SooHeyong Lee, Philip H Bucksbaum, David A Reis (FOCUS Center, University of Michigan) Holger Schlarb (DESY)
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
Laser / RF Timing (Engineering of Femtosecond Timing Systems)
Materials in Extreme THz Fields Valery Dolgashev Hermann Duerr Shambhu Ghimire Hirohito Ogasawara Haidan Wen Aaron Lindenberg.
Imaging x-ray generation and Scattering Tabletop soft x-ray coherent imaging microscopes.
Pump Probe Measurements of Femto-second Pulses By David Baxter.
A. Zholents, July 28, 2004 Timing Controls Using Enhanced SASE Technique *) A. Zholents or *) towards absolute synchronization between “visible” pump and.
Tom Fornek LUSI June 17, LUSI UPDATE – June, 2008.
J. B. Hastings LUSI Overview LCLS FAC March 20, 2007 LUSI Overview J. B. Hastings January 2007 Lehman Review Response to Lehman Review.
J. B. Hastings LCLS FAC October 29, 2007 LUSI Overview 1 LUSI Overview J. B. Hastings Science Opportunities Project Description Project.
David Fritz LCLS FAC Meeting Oct. 30, X-ray Pump-Probe Instrument David Fritz Instrument Overview Instrument Layout System.
J. B. Hastings LCLS FAC April 17, 2007 Coherent X-Ray Imaging Coherent Single Particle Imaging (WBS 1.3) J. B. Hastings*
LCLS Studies of Laser Initiated Dynamics Jorgen Larsson, David Reis, Thomas Tschentscher, and Kelly Gaffney provided LUSI management with preliminary Specifications.
Aymeric Robert XCS 11/12/2008 SLAC National Accelerator Laboratory 1 X -ray C orrelation S pectroscopy Instrument Aymeric.
Ultrafast Spectroscopy
Laser to RF synchronisation A.Winter, Aachen University and DESY Miniworkshop on XFEL Short Bunch Measurement and Timing.
Bill White Drive Laser April 16, Drive Laser Commissioning Experience Reminder of requirements on Drive Laser.
David Fritz XPP June 17, The X-ray Pump-Probe Instrument Instrument Scientist: David Fritz Second Scientist:
SLAC XFEL Short Bunch Measurement and Timing Workshop 1 Current status of the FERMI project (slides provided by Rene Bakker) Photoinjector laser system.
John Arthur LCLS Diagnostics and Commissioning September 22, 2004 Summary of Related Topics from the Miniworkshop on.
Stefan Simrock 3 rd LC School, Oak Brook, IL, USA, 2008, Radio Frequency Systems 1 Timing and Synchronization S. Simrock and Axel Winter DESY, Hamburg,
J. B. Hastings LUSI DOE Review July 23, 2007 X-ray Optics 1 X-ray Optics J. B. Hastings Beam definition Attenuators Slits Pulse picker.
Ultrafast Experiments Hangwen Guo Solid State II Department of Physics & Astronomy, The University of Tennessee.
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
The ILC Laser-wire system Sudhir Dixit The John Adams Institute University of Oxford.
S. Manz 1*, A. Casandruc 1, D. Zhang 1, J. Hirscht 1, S. Bayesteh 3, S. Keskin 1, J. Nicholls 4, T. Gehrke 3, F. Mayet 3, M. Hachmann 3, M. Felber 2, S.
DMP Product Portfolio Femtosecond Lasers Trestles Ti:Sapphire lasers …… fs; nm, mW Mavericks Cr:Forsterite lasers
DS3-DS4 Joint 1 st Task Meeting, Saclay 16 th -17 th May 2005 Matter under extremes conditions Femtosecond Laser Servers Laboratoire Francis Perrin SPAM.
W.S. Graves, ASAC Review, Sept 18-19, 2003 Accelerator Overview Goals for proposal Description of technical components: injector, linac, compressors, etc.
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
David Fritz LUSI DOE Review July 23-24, 2007 XPP (WBS 1.2) Breakout 1 X-ray Pump-Probe (WBS 1.2) David Fritz System Specifications.
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
HELMHOLTZ GEMEINSCHAFT VUV FEL EO systems at the DESY VUV-FEL Stefan Düsterer for the VUV - FEL Team F. Van den Berghe, J. Feldhaus, J. Hauschildt, R.
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Lasers and RF-Timing Franz X. Kaertner
EO sampling technique for femtosecond beam characterization
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Laser System Upgrade Overview
Measurements of the X-ray/pump laser pulse timing Valery Dolgashev, David Fritz, Yiping Feng, Gordon Bowden SLAC 48th ICFA Advanced Beam Dynamics Workshop.
TOWARD GENERATION OF HIGH POWER ULTRAFAST WHITE LIGHT LASER USING FEMTOSECOND TERAWATT LASER IN A GAS-FILLED HOLLOW-CORE FIBER Walid Tawfik Physics and.
Extreme Light Infrastructure in Romania: progress Daniel URSESCU Technical contact point for ELI in Romania INFLPR, Magurele, Romania.
Workshop for advanced THz and Compton X-ray generation
Drive Laser Introduction ‘ir’ master oscillator power amplifier chain (MOPA) uses standard chirped pulse amplification scheme (CPA) third harmonic generation.
Yiping Feng LUSI DOE Review July 23, 2007 Diagnostics (WBS 1.5)1 Diagnostics (WBS 1.5) Yiping Feng Motivations System Specifications.
February 17-18, 2010 R&D ERL Brian Sheehy R&D ERL Laser and laser light transport Brian Sheehy February 17-18, 2010 Laser and Laser Light Transport.
J. B. Hastings LUSI DOE Review July 23, 2007 X-ray Optics 1 X-ray Optics J. B. Hastings Beam definition Attenuators Slits Pulse picker.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
What did we learn from TTF1 FEL? P. Castro (DESY).
Abstract: We present on overview of the STAR project (Southern european Thomson source for Applied Research), in progress at the Univ. of Calabria (Italy)
November 17, 2008 A. Brachmann Slide 1 ILC polarized Electron Source R&D Update LCWS 2008 A. Brachmann, J. Sheppard, F. Zhou - SLAC National Accelerator.
Status of the SPARC laser and “dazzler” experiments
Outline ATF’s Terawatt CO2 laser overview BESTIA concept (as presented at AAC ’14) Progress since AAC ’14 Current vision of the roadmap to 100 TW.
X-ray Correlation Spectroscopy (WBS 1.4) Aymeric Robert
X-ray Pump-Probe (WBS 1.2) David Fritz
LCLS Instrument Development
Principle of Mode Locking
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
LUSI X-ray Pump-Probe Instrument WBS 1.2
X-ray Pump-Probe Instrument
X-ray Pump-Probe Instrument
Optics John Arthur, SLAC & William W. Craig, LLNL April 24, 2002
LCLS Injector Laser System Paul R. Bolton, SLAC April 24, 2002
X-ray Correlation Spectroscopy Instrument
Injector Drive Laser Technical Status
LUSI Status and Early Science
Presentation transcript:

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument X-ray Pump-Probe Instrument D. M. Fritz Pump-probe Experiments System Description X-ray optics Laser System Detector Sample environments Laser/X-ray Timing Technical Choice Pump-probe Experiments System Description X-ray optics Laser System Detector Sample environments Laser/X-ray Timing Technical Choice

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Science Team Specifications and instrument concept developed with the science team. The XRPP team Kelly Gaffney (leader), SSRL/SLAC Jorgen Larsson, Lund Institute of Technology, Sweden David Reis, University of Michigan Thomas Tschentscher, DESY, Germany Specifications and instrument concept developed with the science team. The XRPP team Kelly Gaffney (leader), SSRL/SLAC Jorgen Larsson, Lund Institute of Technology, Sweden David Reis, University of Michigan Thomas Tschentscher, DESY, Germany

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument X-ray Pump-Probe Science Phase Transitions Order / Disorder Metal/Insulator Phonon Dynamics Charge Transfer Reactions Photosynthesis Photovoltaics Vision Photoactive Proteins Phase Transitions Order / Disorder Metal/Insulator Phonon Dynamics Charge Transfer Reactions Photosynthesis Photovoltaics Vision Photoactive Proteins photo- excitation Stampfli and Bennemann Phys. Rev. B 49, 7299 (1994) photo- excitation

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Time Resolved Scattering

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument X-ray Pump-Probe Instrument Offset Monochromator Laser System (Fundamental) X-ray Diffractometer Wavelength Conversion Small Angle Scattering

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument X-ray Optics Double Crystal Offset Monochromator Narrows x-ray spectrum for resonant scattering experiments Multiplexes LCLS beam (mono. beam, diagnostic beam) Double Crystal Offset Monochromator Narrows x-ray spectrum for resonant scattering experiments Multiplexes LCLS beam (mono. beam, diagnostic beam) 6 – 24 keVEnergy Range 4 arcsecχ Accuracy 0.02 arcsec  Accuracy Scattering Angle 600 mmHorizontal Offset ValueParameter Scattering Angles (2 theta) 1.5 Å0.5 Å Silicon °9.1° Silicon °14.9° Diamond °13.9° Diamond °

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument X-ray Optics Double Crystal Offset Monochromator for 2 µm Si 1.5 Å 85% transmission,2.5% - Mono beam, 1.3% - Diagnostics beam Double Crystal Offset Monochromator for 2 µm Si 1.5 Å 85% transmission,2.5% - Mono beam, 1.3% - Diagnostics beam

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument X-ray Optics Double Crystal Offset Monochromator (cont.) motion 0.02 arcsecond resolution and repeatability (100 nrad) Double Crystal Offset Monochromator (cont.) motion 0.02 arcsecond resolution and repeatability (100 nrad) Flexure Stages Piezoelectric Stages

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument X-ray Optics Beryllium lens focusing optic Variable spot size from 2-10 µm and keV Variable spot size from keV > 40% throughput Positioning resolution and repeatability to 1 µm Beryllium lens focusing optic Variable spot size from 2-10 µm and keV Variable spot size from keV > 40% throughput Positioning resolution and repeatability to 1 µm Lens Mono 190 m 4 m

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Laser System Overview

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Ultrafast Laser System Ti:Sapphire Oscillator & Power Amplifiers Compressor, OPA, Harmonic Generation, Delay Stage

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Ultrafast Laser System Ti:Sapphire Oscillator 119 MHz rep. rate, <30 fs ~ 2.5 nJ/pulse Frequency stabilized to LCLS RF < 300 fs rms phase jitter Demonstrated at SPPS Ti:Sapphire Oscillator 119 MHz rep. rate, <30 fs ~ 2.5 nJ/pulse Frequency stabilized to LCLS RF < 300 fs rms phase jitter Demonstrated at SPPS Cavity Length Stabilization Mirror

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Ultrafast Laser System Power Amplifiers Regenerative amplifier ~ 2.5 mJ (< 1% rms stability), 120 Hz, <35 fs Multipass amplifier ~ 20 mJ (<1.5% rms stability), 120 Hz, <35 fs Second Compressor External Pockels Cell Arbitrary laser pulse train structure Power Amplifiers Regenerative amplifier ~ 2.5 mJ (< 1% rms stability), 120 Hz, <35 fs Multipass amplifier ~ 20 mJ (<1.5% rms stability), 120 Hz, <35 fs Second Compressor External Pockels Cell Arbitrary laser pulse train structure

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Ultrafast Laser System Temporal Pulse Shaper Create complex excitation pulse envelopes Multi-pulses Compression optimization Temporal Pulse Shaper Create complex excitation pulse envelopes Multi-pulses Compression optimization

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument XPP Detector - BNL Pixel array detector 1000 x 1000 pixels 80 micron pixel size High Detector Quantum Efficiency (DQE) 10 4 dynamic range at 8 keV 120 Hz Readout Rate Pixel array detector 1000 x 1000 pixels 80 micron pixel size High Detector Quantum Efficiency (DQE) 10 4 dynamic range at 8 keV 120 Hz Readout Rate

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument XPP Diffractometer System Rotary Stages vs. Robot Arm

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument XPP Diffractometer System X-ray Diffractometer Operate in both direct and monochromatic beam Sample orientation & translation Detector motion about a spherical surface centered at sample (variable radius from 0.1 m to 1.5 m) Accommodate various sample environments X-ray Diffractometer Operate in both direct and monochromatic beam Sample orientation & translation Detector motion about a spherical surface centered at sample (variable radius from 0.1 m to 1.5 m) Accommodate various sample environments

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument 10 µrad angular resolution with XAMPS detector Detector translation Operate in both direct and monochromatic beam 10 µrad angular resolution with XAMPS detector Detector translation Operate in both direct and monochromatic beam Small Angle Scattering Capability

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Sample Environments Cryostat System Vacuum shroud Optical and x-ray windows (collinear & non-collinear geometry) Decoupled sample motion Cryostat System Vacuum shroud Optical and x-ray windows (collinear & non-collinear geometry) Decoupled sample motion Det. Array Collinear Geometry Det. Array Non-collinear Geometry

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Expected Fluctuations of the LCLS Intensity fluctuations exceeding 30% Expected spatial jitter ~25% of beam diameter Wavelength fluctuations expected to be ~ 0.2% of center wavelength (≈ LCLS intrinsic bandwidth) Pulse duration expected to vary ~15% X-ray Pulse/LCLS RF timing will fluctuate by ~ 1 ps - Diagnostics are required to measure these parameters since they cannot be controlled - This information must be available to accelerator operations and experiments Intensity fluctuations exceeding 30% Expected spatial jitter ~25% of beam diameter Wavelength fluctuations expected to be ~ 0.2% of center wavelength (≈ LCLS intrinsic bandwidth) Pulse duration expected to vary ~15% X-ray Pulse/LCLS RF timing will fluctuate by ~ 1 ps - Diagnostics are required to measure these parameters since they cannot be controlled - This information must be available to accelerator operations and experiments

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Coax RF distribution Network e-beam phase to RF phase End Station Laser phase to RF phase Limited to ~ 1 ps ! Sources of Short Term Jitter Accelerating Elements Experimental Pump Laser Electron Gun Master Clock Coax RF Distribution Network Temporal Jitter

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Electro-optic Sampling Electro-optic Sampling Laser Pump-probe Laser LTUNEH Temporal resolution is now limited by: 1)Our ability to phase lock the lasers to the RF 2)Intra-bunch SASE jitter Gun Laser Sector 20 Stabilized Fiber Optic RF Distribution (10 fs) LBNL

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument SPPS Laser/X-ray Timing 100 consecutive shots Single shot, Lorentzian fit

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Data Sorting at SPPS 10 Hz Point Detector

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument XPP Data Sorting at LCLS 120 Hz 1 Megapixel Area Detector 2-dimensional binning or data filtering? Real Time Processing Unit Intensity Time of Arrival Wavelength LCLS Beam Parameters X-ray Detector 180 MB/s ~ 1 MB/s t 1 t 2 t 3 t 4 …………………………………………………….………………t N

D. M. Fritz LCLS FAC Meeting April 16, 2007 XPP Instrument Key Technological Choices 1.Diamond vs. Silicon Monochromator Crystal - Absorption, Damage vs. Quality 2.Flexure vs. Piezo Monochromator Rotation Stage - Stability vs. Range 3.Robot Arm vs. Rotary Stage Detector Mover - Reciprocal Space Access vs. Control, Safety 4.Hexapod vs. Stages Sample Manipulator - Range of Motion vs. Stability, Control 5.Ti:Sapphire Oscillator vs. Fiber Oscillator - Bandwidth vs. Synchronization 1.Diamond vs. Silicon Monochromator Crystal - Absorption, Damage vs. Quality 2.Flexure vs. Piezo Monochromator Rotation Stage - Stability vs. Range 3.Robot Arm vs. Rotary Stage Detector Mover - Reciprocal Space Access vs. Control, Safety 4.Hexapod vs. Stages Sample Manipulator - Range of Motion vs. Stability, Control 5.Ti:Sapphire Oscillator vs. Fiber Oscillator - Bandwidth vs. Synchronization