Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.

Slides:



Advertisements
Similar presentations
A coherent subnanosecond single electron source
Advertisements

PHYSIQUE MESOSCOPIQUE
Separation of neutral and charge modes in one dimensional chiral edge channels
First things first ,980. Outline Physics = surprise Physics = surprise Electron counting = field theory Electron counting = field theory Full.
Superconducting qubits
Nanostructures on ultra-clean two-dimensional electron gases T. Ihn, C. Rössler, S. Baer, K. Ensslin C. Reichl and W. Wegscheider.
AC CONDUCTANCE AND NON-SYMMETRIZED NOISE AT FINITE FREQUENCY IN QUANTUM WIRE AND CARBON NANOTUBE Adeline CRÉPIEUX 1, Cristina BENA 2,3 and Inès SAFI 2.
14 février 2011Evaluation AERES1 Equipe de Nanophysique – Groupe 2 Membres permanents Adeline Crépieux MdC U2 Pierre Devillard MdC U1 Thibaut Jonckheere.
Quantum Coherent Nanoelectromechanics Robert Shekhter Leonid Gorelik and Mats Jonson University of Gothenburg / Heriot-Watt University / Chalmers Univ.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Igor Aleiner (Columbia) Theory of Quantum Dots as Zero-dimensional Metallic Systems Physics of the Microworld Conference, Oct. 16 (2004) Collaborators:
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Multi-terminal spin dependent transport in carbon nanotubes Chéryl FEUILLET-PALMA Laboratoire Pierre Aigrain Ecole Normale Supérieure, Paris France Co-workers.
A. A. Clerk, S. M. Girvin, and A. D. Stone Departments of Applied Physics and Physics, Yale University Q:What characterizes an “ideal” quantum detector?
S. Y. Hsu ( 許世英 ) and K. M. Liu( 劉凱銘 ) May 29, 2007 NSC M and NSC M Department of Electrophysics, National Chiao Tung University.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Quantum shot noise: from Schottky to Bell
Scattering theory of conductance and noise Markus Büttiker University of Geneva Multi-probe conductors.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
Pumping in Interacting Systems Yuval Oreg Department of Condensed Matter Physics
Center for Quantum Information ROCHESTER HARVARD CORNELL STANFORD RUTGERS LUCENT TECHNOLOGIES Spin effects and decoherence in high-mobility Si MOSFETs.
Activation energies and dissipation in biased quantum Hall bilayer systems at. B. Roostaei [1,2], H. A. Fertig [3,4], K. J. Mullen [2], S. Simon [5] [1]
© 2010 Eric Pop, UIUCECE 598EP: Hot Chips Conductance Quantization One-dimensional ballistic/coherent transport Landauer theory The role of contacts Quantum.
Lesson 5, Part 2: Electric field induced transport in nanostructures.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
Markus Büttiker University of Geneva Technion, Haifa, Israel, Jan. 11, 2007 Quantum shot noise: from Schottky to Bell.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Slava Kashcheyevs Bernd Kästner (PTB, Braunschweig, Germany) Mark Buitelaar (University of Cambridge, UK) AAMP’2008, Ratnieki, Latvia Low-frequency excitation.
Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Nature (2010) Department of Physics, Indian Institute of Science,
Magnetopolaronic effects in single-molecule transistor
Spin and Charge Pumping in an Interacting Quantum Wire R. C., N. Andrei (Rutgers University, NJ), Q. Niu (The University of Texas, Texas) Quantum Pumping.
Transport properties: conductance and thermopower
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Dynamic response of a mesoscopic capacitor in the presence of strong electron interactions Yuji Hamamoto*, Thibaut Jonckheere, Takeo Kato*, Thierry Martin.
Witnessing Quantum Coherence IWQSE 2013, NTU Oct. 15 (2013) Yueh-Nan Chen ( 陳岳男 ) Dep. of Physics, NCKU National Center for Theoretical Sciences (South)
„To bunch or not to bunch” Tóvári Endre Journal Club márc. 8. Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources.
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Physics Department, Beijing Normal University
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Adiabatic quantum pumping in nanoscale electronic devices Adiabatic quantum pumping in nanoscale electronic devices Huan-Qiang Zhou, Sam Young Cho, Urban.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Mesoscopic physics and nanotechnology
By Supervisor Urbashi Satpathi Dr. Prosenjit Singha De0.
Nikolai Kopnin Theory Group Dynamics of Superfluid 3 He and Superconductors.
Charge pumping in mesoscopic systems coupled to a superconducting lead
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Spin-orbit interaction in semiconductor quantum dots systems
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Basics of edge channels in IQHE doing physics with integer edge channels studies of transport in FQHE regime deviations from the ‘accepted’ picture Moty.
Physics 121 Lecture Summaries Contents: – 11/17/2012 Lecture 1Introduction to Fields Lecture 2Electric Charge Lecture 3Electric Field Lecture 4Gauss’s.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Orbitally phase coherent spintronics
Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy.
Physics 121 Lecture Summaries
HRI Winter School 2015, Allahabad Interferometry in the Quantum Hall Effect Regime Lecture 2: Quantum Electronics Tools exercises Go over equations Naïve.
Peter Samuelsson, Sara Kheradsoud, Björn Sothmann
Full Current Statistics in Multiterminal Mesoscopic Conductors
Persistent spin current
Michael Fuhrer Director, FLEET Monash University
Presentation transcript:

Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors

The elementary system Mesoscopic physics focuses on a few elementary geometries which illustrate best the effect we are interested in: Closed ringsPersistent currents Rings with leads Aharonov-Bohm effect Quantum point contacts Conductance quantization Cavity connected to one leadRC-time Mesoscopic physics = Wave nature of electrons is important

The mesoscopic capacitor single potential U geometrical capacitance C Buttiker, Thomas, Prêtre, Phys. Lett. A 180, 364 (1993) Gabelli, Fève, Berroir, Plaçais, Cavanna, Etienne, Jin, Glattli, Science 313, 499 (2006). What is the RC-time?

Classical versus quantum charge relaxation Classical circuit Mesoscopic capacitor For a single, spin-polarized channel is universal !! Buttiker, Thomas, Pretre, Phys. Lett. A 180, 364 (1993)

Dynamic external and internal response Internal response Invariance under arbitrary potential shift single potential U geometrical capacitance C Buttiker, Thomas, Pretre, Phys. Lett. A 180, 364 (1993) External response 7

Capacitance and Charge Relaxation electrochemical capacitance charge relaxation resistance Eigen channels of s; Universal for n =1; Buttiker, Thomas, Pretre, Phys. Lett. A180, 364 (1993)

Universal for n =1; For k degenerate channels Spin less electrons Spin degenerate channel Ideally coupled Carbon Nanotube Chaotic cavity coupled to two QPC (N channel) Chaotic cavity coupled to two QPC (one channel) Quantized charge relaxation resistances Brouwer and M. B., Europhys. Lett. 37, 441 (1997). Pedersen, van Langen, M. B., Phys. Rev. B 57, 1838 (1998)

Experimentalists model density of states assumption 1: uniform level spacing Gabelli (thesis), Gabelli et al, Science 313, 499 (2006) assumption 2: voltage dependence of transmission through QPC

Gabelli, Feve, Berroir, Placais, Cavanna, Etienne, Jin, Glattli Science 313, 499 (2006). Mesoscopic Capacitor: Experiment

Role of coherence: S. Nigg and M. Buttiker, (unpublished)

Role of coherence: S. Nigg and M. Buttiker, (unpublished)

Role of charge quantization M. Buttiker and S. E. Nigg, Nanotechnolgy 18, (2007) [S. E. Nigg, R. Lopez and M. Buttiker, PRL 97, (2006)]

Role of Interactions S. E. Nigg, R. Lopez and M. Buttiker, PRL 97, (2006) For poarized spin channel for “arbitrary” interactions!!

Coulomb blockade and spin degeneracy S. E. Nigg, R. Lopez, MB, Phys. Rev. Lett. 97, (2006) two levels low magnetic fields coupling strongly blockaded weakly blockaded

Quantized dynamic charge injection G. Feve, Thesis, ENS, Paris, Dec. 23, 2006

Summary For a single spin-polarized channel, self-consistent scattering theory predicts a universal charge relaxation resistance of half a resistance quantum A seminal experiment by Gabelli et al. supports this prediction Quantized dynamic charge emission and absorption Role of dephasing Quantized charge relaxation resistance Role of charge quantization Role of inetractions

Works on pumping

Pumping (w. M. Moskalets) Time-resolved noise of adiabatic quantum pumps M. Moskalets, M. Buttiker, Phys. Rev. B 75, (2007) ● Multiparticle correlations of an oscillating scatterer M. Moskalets and M. Büttiker, Phys. Rev. B 73, (2006) Magnetic-field symmetry of pump currents of adiabatically driven mesoscopic structures M. Moskalets and M. Büttiker, Phys. Rev. B 72, (2005) Scattering Theory of Dynamic Electrical Transport M. Buttiker, M. Moskalets, Lect. Notes Phys. 690, 33 (2006) Floquet scattering theory for current and heat noise in large amplitude adiabatic pumps M. Moskalets and M. Büttiker, Phys. Rev. B 70, (2004) Adiabatic quantum pump in the presence of external ac voltages M. Moskalets and M. Büttiker, Phys. Rev. B 69, (2004) Quantum pumping: Coherent rings versus open conductors M. Moskalets and M. Büttiker, Phys. Rev. B 68, (2003)

Pumping (w. M. Moskalets) Hidden quantum pump effects in quantum coherent rings M. Moskalets and M. Büttiker, Phys. Rev. B 68, (2003) Floquet states and persistent-current transitions in a mesoscopic ring M. Moskalets and M. Büttiker, Phys. Rev. B 66, (2002) Floquet scattering theory of quantum pumps M. Moskalets and M. Büttiker, Phys. Rev. B 66, (2002) Dissipation and noise in adiabatic quantum pumps M. Moskalets and M. Büttiker, Phys. Rev. B 66, (2002) Effect of inelastic scattering on parametric pumping M. Moskalets and M. Büttiker, Phys. Rev. B 64, (2001)

Pumping ● Leggett-Garg Inequality with a Kicked Quantum Pump A. N. Jordan, A. N. Korotkov, and M. Büttiker, Phys. Rev. Lett. 97, (2006) Shot noise of photon-excited electron-hole pairs in open quantum dots M. L. Polianski, P. Samuelsson, and M. Büttiker, Phys. Rev. B 72, (2005) ● Dynamic generation of orbital quasiparticle entanglement in mesoscopic conductors P. Samuelsson and M. Büttiker, Phys. Rev. B 71, (2005) ● Photon-assisted electron-hole shot noise in multiterminal conductors V. S. Rychkov, M. L. Polianski, and M. Büttiker, Phys. Rev. B 72, (2005) Noise-assisted classical adiabatic pumping in a symmetric periodic potential O. Usmani, E. Lutz, and M. Büttiker, Phys. Rev. E 66, (2002) Scattering theory of photon-assisted electron transport M. H. Pedersen and M. Büttiker, Phys. Rev. B 58, (1998)