Hard-Soft Acids and Bases: Altering the Cu + /Cu 2+ Equilibrium Objectives: (1) Calculate/predict stability of copper oxidation states (2) Use ligands.

Slides:



Advertisements
Similar presentations
Author: J R Reid Oxidation and Reduction – Introduction LEO goes GER Examples Balancing simple equations Why gain/lose electrons? Electronegativity.
Advertisements

 Single Replacement Reactions + + . General Equation A + BX  AX + B.
Hard-Soft Acid-Base Theory
LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON TO GO BACK, PRESS ESC BUTTON TO END LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON.
Hard and Soft Acid and Bases
Knowing Nernst: Non-equilibrium copper redox chemistry.
Periodic Table – Filling Order
Oxidation Numbers (Ox #’s) What are they used for? Why do you need to learn them? to write chemical names and chemical formulas to balance redox equations.
© AS Jul-12. Electronegativity = the power of an atom to attract the electrons in a covalent bond.
Starter For each ion, draw a dot-and-cross diagram and predict the shape and bond angles. H3O+ NH2-
Transition Metal Coordination Compounds Metal – Ligand Interactions Tetrahedral (T d ) Square Pyramidal (C 4v ) Octahedral (O h ) Square Planar (D 4h )
Trends of the Periodic Table
Periodic Table Of Elements
Oxidation: any process by which an entity loses electrons. e.g.2Mg o + O 2 o 2Mg 2+ + O 2- H 2 o + F 2 o 2H + F - Mg and H are oxidised in these examples.
Ions Wednesday January 8, 2014
Bellwork, Fri. Sept. 14 Which element is LEAST likely to combine with another element to form a molecule? -Chlorine (Cl), a halogen -Iron (Fe), a metal.
Handouts Syllabus Safety (detailed) Web page is up and running.
Modern Periodic Table Objective:
Alkali Metals, Group 1 H N OF Cl Br I Li Na K Fr Be Mg Ca Ra Sc Ac He Ne Ar Kr Rn Ti V Cr Mn Fe Co Ni Cu ZnGa Ge As Se Rb Sr Y Xe Zr Nb Mo Tc Ru Rh Pd.
1 Hydro gen 1 3 Li Lithi um 2 1 Na Sodiu m 3 1919 K Potas sium 4 3737 Rb Rubid ium 5 5 Cs Cesiu m 6 8787 Fr Franc ium 7 4 Be Beryl lium 1212 Mg Magne sium.
PPT - Forming Ionic Compounds
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
The Periodic Table and the Elements. What is the periodic table ? What information is obtained from the table ? How can elemental properties be predicted.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
S2 SCIENCE CHEMICAL REACTIONS
Metal or non-metal? iron (Fe) iodine (I) antimony (Sb) copper (Cu)
Drawing Lewis Dot Diagrams
1.7 Trends in the Periodic Table
Chapter 6: Chemical Bonding
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Chemical Reactions and Balancing Equations (I)
Single Replacement Reactions
Predicting Reactions.
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
KS4 Chemistry The Periodic Table.
3.3 The Periodic Table and the Elements
ELECTROCHEMISTRY 9.1 and 9.2 To play the movies and simulations included, view the presentation in Slide Show Mode.
KS4 Chemistry Metallic Bonding.
Emission of Energy by Atoms and Electron Configurations
THE TRANSITION METALS.
Trends of the Periodic Table
Chemsheets AS006 (Electron arrangement)
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Binary Compounds NaCl sodium chlor ine ide (Na1+ Cl1-) CaS
3.3 The Periodic Table and the Elements
Periodic Table of the Elements
Chemsheets AS006 (Electron arrangement)
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
What Things Do I have To Memorize in AP Chem?
PERIODIC TABLE OF ELEMENTS
The Periodic Table and the Elements
Speed Dating Speed Dating H Na Speed Dating Speed Dating K Be.
Journal: Choose one of these Periodic Table ideas or come up with your own. Explain what different CATEGORIES/SECTIONS you would make to group your “Elements”
Ionic Compounds Formula to Name
3.3 The Periodic Table and the Elements
The Periodic Table and the Elements
Drill: Ionic bonding Objective:
Electron Configurations
The Periodic Table and the Elements
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
The Periodic Table Part I – Categories of Elements
Ionic vs. Covalent Bonding
Physical Inorganic Chemistry : THE STRENGTH OF ACIDS & BASES
PPT - Forming Ionic Compounds
Introduction to Periodic Trends
Electron Configurations and the Periodic Table
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

Hard-Soft Acids and Bases: Altering the Cu + /Cu 2+ Equilibrium Objectives: (1) Calculate/predict stability of copper oxidation states (2) Use ligands to change stabilities of oxidation states HSAB theory: qualitative predictions Redox potentials: quantitative results

Oxidation States Sum of oxidation states = overall charge on species Assumes unequal sharing of electrons –more electronegative atom gets all electrons, preferred oxidation state Examples: –MnO, MnO 2, [K + MnO 4 - ] What differences are found between metals in different oxidation states? Atomic radius, reactivity Hard/soft, redox potential

Hard vs. Soft Ligands and Metals Bonding trends of Lewis acids / Lewis bases --electron acceptors / electron donors Polarizable (soft) vs non-polarizable (hard):

Thermodynamics of Hard/Soft Ligand/Metal Binding --Hard-hard / soft-soft thermodynamically stronger binding / interaction --Hard-soft / soft-hard thermodynamically weaker binding / interaction HSAB theory: Preferential selection of oxidation states by hard or soft ligand set

K stability = [AB] / [A][B] softerharder most stable complexes least stable complexes

Lewis acids and bases Hard acids H +, Li +, Na +, K +, Rb +, Cs + Be 2+, Mg 2+, Ca 2+, Sr 2+, Ba 2+ BF 3, Al 3+, Si 4+, BCl 3, AlCl 3 Ti 4+, Cr 3+, Cr 2+, Mn 2+ Sc 3+, La 3+, Ce 4+, Gd 3+, Lu 3+, Th 4+, U 4+, Ti 4+, Zr 4+, Hf 4+, VO 4+, Cr 6+, Si 4+, Sn 4+ Borderline acids Fe 2+, Co 2+, Ni 2+, Cu 2+, Zn 2+ Rh 3+, Ir 3+, Ru 3+, Os 2+ R 3 C +, Sn 2+, Pb 2+ NO +, Sb 3+, Bi 3+ SO 2 Soft acids Tl +, Cu +, Ag +, Au +, Cd 2+ Hg 2+, Pd 2+, Pt 2+, M 0, RHg +, Hg 2 2+ BH 3 CH 2 HO +, RO + Hard bases F - H 2 O, OH -, O 2- CH 3 COO -, ROH, RO -, R 2 O NO 3-, ClO 4- CO 3 2-, SO 4 2-, PO 4 3- RNH 2 N 2 H 4 Borderline bases Cl -, Br - NH 3, NO 2-, N 3- SO 3 2- C 6 H 5 NH 2, pyridine N 2 Soft bases H -, I - H 2 S, HS -, S 2-, RSH, RS-, R 2 S SCN - (bound through S), CN -, RNC, CO R 3 P, C 2 H 4, C 6 H 6 (RO) 3 P

 G 0 = -nFE 0 n = mol e - F = 96,500 Coulombs / mol e - E 0 = standard reduction potential in volts  G 0 = free energy in joules Electrochemical potentials E 0 --Related to thermodynamic stability:

(1) Cu 2+ + Iˉ + eˉ  CuI0.86V (2)Cu 2+ + Clˉ + eˉ  CuCl0.54V (3)I 2 + 2eˉ  2Iˉ0.54V (4)Cu + (aq) + eˉ  Cu(s)0.52V (5)Cu 2+ (aq) + 2eˉ  Cu(s)0.37V (6)CuCl + eˉ  Cu(s) + Clˉ0.14V (7)Cu(NH 3 ) eˉ  Cu(s) + 4NH V (8) Cu 2+ (aq) + eˉ  Cu + (aq)-0.15V (9)CuI + eˉ  Cu(s) + Iˉ-0.19V (10)Cu(en) eˉ  Cu + 2en-0.50V Electrochemical Potentials Used in Experiment 1: E 0

Redox Potential Calculation Cu(aq) NH 3  Cu(NH 3 ) 4 +2 (5)Cu 2+ (aq) + 2eˉ  Cu(s)0.37V (7)Cu(NH 3 ) eˉ  Cu(s) + 4NH V Reduction: Cu 2+ (aq) + 2eˉ  Cu(s) E 0 = +0.37V Oxidation: Cu(s) + 4NH 3  Cu(NH 3 ) eˉ E 0 = +0.12V Net: Cu 2+ (aq) + 4NH 3  Cu(NH 3 ) 4 2+ E 0 = +0.49V (5) + (7*)

Disproportionation 2 Fe 4+ →Fe 3+ + Fe 5+ 2 H 2 O 2 → 2 H 2 O + O 2 --Two identical atoms in same oxidation state exchange one electron --Take on two different oxidation states 2 Cu + → Cu 0 + Cu 2+

Summary --Make Cu compounds, force into desired oxidation state with correct H/S ligands --Determine if products agree with HSAB and electrochemical potentials --Determine whether two theories useful in applications