1 Learning Materials for Surface Water Monitoring Gerald Scarzella.

Slides:



Advertisements
Similar presentations
Social Indicators for Nonpoint Source Projects Building Capacity for Sustainable Watershed Management in Illinois Presenter: Linda Prokopy, Purdue University.
Advertisements

VARYING RESIDUAL VARIABILITY SEQUENCE OF GRAPHS TO ILLUSTRATE r 2 VARYING RESIDUAL VARIABILITY N. Scott Urquhart Director, STARMAP Department of Statistics.
Overview of the Board’s Quality Management Plan. Topics in this Session  Quality System Overview  Overview of the contents of the Board’s Quality Management.
A framework for landscape indicators for measuring aquatic responses David Theobald, John Norman, Erin Poston, Silvio Ferraz Natural Resource Ecology Lab.
# 1 METADATA: A LEGACY FOR OUR GRANDCHILDREN N. Scott Urquhart STARMAP Program Director Department of Statistics Colorado State University.
# 1 CSU’s EPA-FUNDED PROGRAM ON SPACE-TIME AQUATIC RESOURCE MODELING and ANALYSIS PROGRAM (STARMAP) N. SCOTT URQUHART SENIOR RESEARCH SCIENTIST DEPARTMENT.
An Overview STARMAP Project I Jennifer Hoeting Department of Statistics Colorado State University
EMAP West Training Presentations Jay Araas Department of Statistics In partial fulfillment of the requirements for the Degree of Master of Science Colorado.
Multi-Lag Cluster Enhancement of Fixed Grids for Variogram Estimation for Near Coastal Systems Kerry J. Ritter, SCCWRP Molly Leecaster, SCCWRP N. Scott.
# 1 STATISTICAL ASPECTS OF COLLECTIONS OF BEES TO STUDY PESTICIDES N. SCOTT URQUHART SENIOR RESEARCH SCIENTIST DEPARTMENT OF STATISTICS COLORADO STATE.
Robust sampling of natural resources using a GIS implementation of GRTS David Theobald Natural Resource Ecology Lab Dept of Recreation & Tourism Colorado.
Nonparametric, Model-Assisted Estimation for a Two-Stage Sampling Design Mark Delorey, F. Jay Breidt, Colorado State University Abstract In aquatic resources,
Bayesian Models for Radio Telemetry Habitat Data Megan C. Dailey* Alix I. Gitelman Fred L. Ramsey Steve Starcevich * Department of Statistics, Colorado.
Rational Tool Overview. Introduction Requirements-Driven Software Development with Rational Analyst Studio. Tafadzwa Nzara Analysis & Design Consultant.
1 STARMAP: Project 2 Causal Modeling for Aquatic Resources Alix I Gitelman Stephen Jensen Statistics Department Oregon State University August 2003 Corvallis,
EPA & Ecology 2005 # 1 AN ACADEMICIAN’S VIEW OF EPA’s ECOLOGY PROGRAM ESPECIALLY ITS ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP) N. Scott Urquhart,
State-Space Models for Within-Stream Network Dependence William Coar Department of Statistics Colorado State University Joint work with F. Jay Breidt This.
PAGE # 1 A PROGRAM IN STATISTICAL SURVEY DESIGN AND ANALYSIS FOR AQUATIC RESOURCES STARMAP: THE PROGRAM AT COLORADO STATE UNIVERSITY SPACE-TIME AQUATIC.
Linking watersheds and streams through functional modeling of watershed processes David Theobald, Silvio Ferraz, Erin Poston, and Jeff Deems Natural Resource.
Semiparametric Mixed Models in Small Area Estimation Mark Delorey F. Jay Breidt Colorado State University September 22, 2002.
Bayesian modeling for ordinal substrate size using EPA stream data Megan Dailey Higgs Jennifer Hoeting Brian Bledsoe* Department of Statistics, Colorado.
Functional linkage of watersheds and streams: ArcGIS FLoWS tools David Theobald, John Norman, Erin Poston, Silvio Ferraz Natural Resource Ecology Lab,
Habitat selection models to account for seasonal persistence in radio telemetry data Megan C. Dailey* Alix I. Gitelman Fred L. Ramsey Steve Starcevich.
TOPOGRID Hydrologically Correct Digital Elevation Model A central goal of our research is to develop landscape-level indicators that can be used to predict.
PAGE # 1 NWQMC NWQMC December 11, 2002 SELECTION OF WATER QUALITY MONITORING SITES and CSU’s STARMAP by N. Scott Urquhart Department of Statistics Colorado.
1 Accounting for Spatial Dependence in Bayesian Belief Networks Alix I Gitelman Statistics Department Oregon State University August 2003 JSM, San Francisco.
Quantifying fragmentation of freshwater systems using a measure of discharge modification (and other applications) David Theobald, John Norman, David Merritt.
LEARNING MATERIALS for AQUATIC MONITORING N. Scott Urquhart Department of Statistics Colorado State University.
PAGE # 1 Presented by Stacey Hancock Advised by Scott Urquhart Colorado State University Developing Learning Materials for Surface Water Monitoring.
0.6 – – – – – 15.9 MBSS Survey Sites 1996 Dissolved organic carbon (mg/l) 0.7 – – – –
Quantifying fragmentation of freshwater systems using a measure of discharge modification (and other applications) David Theobald, John Norman, David Merritt.
Distribution Function Estimation in Small Areas for Aquatic Resources Spatial Ensemble Estimates of Temporal Trends in Acid Neutralizing Capacity Mark.
Two-Phase Sampling Approach for Augmenting Fixed Grid Designs to Improve Local Estimation for Mapping Aquatic Resources Kerry J. Ritter Molly Leecaster.
Example For simplicity, assume Z i |F i are independent. Let the relative frame size of the incomplete frame as well as the expected cost vary. Relative.
Habitat association models  Independent Multinomial Selections (IMS): (McCracken, Manly, & Vander Heyden, 1998) Product multinomial likelihood with multinomial.
PAGE # 1 STARMAP OUTREACH Scott Urquhart Department of Statistics Colorado State University.
October, A Comparison of Variance Estimates of Stream Network Resources Sarah J. Williams Candidate for the degree of Master of Science Colorado.
Distribution Function Estimation in Small Areas for Aquatic Resources Spatial Ensemble Estimates of Temporal Trends in Acid Neutralizing Capacity Mark.
State-Space Models for Biological Monitoring Data Devin S. Johnson University of Alaska Fairbanks and Jennifer A. Hoeting Colorado State University.
Optimal Sample Designs for Mapping EMAP Data Molly Leecaster, Ph.D. Idaho National Engineering & Environmental Laboratory Jennifer Hoeting, Ph. D. Colorado.
December 1, 2011 A presentation by USFpedals.org A project of Environmental Studies students in “Humans & Environmental Change” (ENVA 109) University of.
Applications of Nonparametric Survey Regression Estimation in Aquatic Resources F. Jay Breidt, Siobhan Everson-Stewart, Alicia Johnson, Jean D. Opsomer.
# 1 POSSIBLE LESSONS FOR CEER-GOM FROM EMAP N. Scott Urquhart STARMAP Program Director Department of Statistics Colorado State University.
Random Effects Graphical Models and the Analysis of Compositional Data Devin S. Johnson and Jennifer A. Hoeting STARMAP Department of Statistics Colorado.
1 Learning Materials for Surface Water Monitoring Gerald Scarzella.
Distribution Function Estimation in Small Areas for Aquatic Resources Spatial Ensemble Estimates of Temporal Trends in Acid Neutralizing Capacity Mark.
Distribution Function Estimation in Small Areas for Aquatic Resources Spatial Ensemble Estimates of Temporal Trends in Acid Neutralizing Capacity Mark.
1 Adjustment Procedures to Account for Nonignorable Missing Data in Environmental Surveys Breda Munoz Virginia Lesser R
1 Spatial and Spatio-temporal modeling of the abundance of spawning coho salmon on the Oregon coast R Ruben Smith Don L. Stevens Jr. September.
Coalition 101. RESPECT AND VALUE “The group respects my opinion and provides positive ways for me to contribute.” EFFICIENCY AND EFFECTIVENESS “The roles.
Introduction to the Exchange Network May 30th, 2012.
DAMARS/STARMAP 8/11/03# 1 STARMAP YEAR 2 N. Scott Urquhart STARMAP Director Department of Statistics Colorado State University Fort Collins, CO
PAGE # 1 EaGLes Conference EaGLes Conference December 3, 2002 CASE STUDY 6: INDICATORS OF MARSH MAINTENANCE OF ELEVATION comments by N. Scott Urquhart.
# 1 CSU’s EPA-FUNDED PROGRAM ON “APPLYING SPATIAL AND TEMPORTAL MODELING OF STATISTICAL SURVEYS TO AQUATIC RESOURCES” N. SCOTT URQUHART RESEARCH SCIENTIST.
Cognitive Accessibility on the Web Technical Agenda.
VARYING DEVIATION BETWEEN H 0 AND TRUE  SEQUENCE OF GRAPHS TO ILLUSTRATE POWER VARYING DEVIATION BETWEEN H 0 AND TRUE  N. Scott Urquhart Director, STARMAP.
Linked Micromaps: Statistical Summaries of Monitoring Data in a Spatial Context Michael G.McManus 1, Quinn Payton 2, Marc H. Weber 3, Thomas M. Kincaid.
Introduction to the Exchange Network May 30th, 2012.
INTRODUCTION SAP Portal Fundamentals SAP Web AS Fundamental SAP Web AS ABAP Administration: SAP Web AS Java Administration SAP NetWeaver Portal Fundamentals.
Drinking Water Source Protection Action Kit
Contributions from… Charles Stanier Cori Burbach Mary Rose Corrigan
Institutional logo(s) should replace the KSU logo
Solicitation # Healthcare Simulation Products & Services
People Who Did the Study Universities they are affiliated with
National Act Regulated by EPA
Air Quality is Important to Eastern Iowa
ASDWA Data Management User Conference
TROUBLESOME CONCEPTS IN STATISTICS: r2 AND POWER
Water System Finance Workshop London, Kentucky June 11, 2013
Water System Finance Workshop Knoxville, Tennessee June 13, 2013
Presentation transcript:

1 Learning Materials for Surface Water Monitoring Gerald Scarzella

2 PROJECT FUNDING The work reported here was developed under the STAR Research Assistance Agreement CR awarded by the U.S. Environmental Protection Agency (EPA) to Colorado State University. This presentation has not been formally reviewed by EPA. The views expressed here are solely those of the presenter and STARMAP, the Program he represents. EPA does not endorse any products or commercial services mentioned in this presentation.

3 Introduction My background Individual Acknowledgements –Scott Urquhart –Greg Fencl –Darrin Goodman

4 Overview Environmental Protection Agency’s request for applications Outreach and Extension component Environmental Monitoring and Assessment Program (EMAP)

5 Agenda Intent of the tutorial Interface Content Test drive

6 Intent of the Tutorial Use by water quality personnel in the States and Tribes Support diversity in perspective and geographic context

7 Interface Computers CD ROM Web browser

8 Content Why Monitor Where to Monitor What to Monitor How to Monitor How to Summarize Case Studies

9 Test Drive Technical and visual aspects Content This is only a test

10 Summarize Fill out feedback form Feel free to discuss any aspect