PHYS 30101 Quantum Mechanics PHYS 30101 Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)

Slides:



Advertisements
Similar presentations
The Quantum Mechanics of Simple Systems
Advertisements

Physical Background. Atomic and Molecular States Rudiments of Quantum Theory –the old quantum theory –mathematical apparatus –interpretation Atomic States.
Physics 451 Quantum mechanics I Fall 2012 Dec 5, 2012 Karine Chesnel.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
PHYS Quantum Mechanics “the dreams stuff is made of” PHYS Quantum Mechanics “the dreams stuff is made of” Dr Jon Billowes Nuclear Physics Group.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
PH 401 Dr. Cecilia Vogel. Review Outline  Spherically Symmetric Hamiltonian  H-atom for example  Eigenstates of H, L z, L 2  Degeneracy  Commutators.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
P460 - real H atom1 The Real Hydrogen Atom Solve SE and in first order get (independent of L): can use perturbation theory to determine: magnetic effects.
Chap 12 Quantum Theory: techniques and applications Objectives: Solve the Schrödinger equation for: Translational motion (Particle in a box) Vibrational.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
QM in 3D Quantum Ch.4, Physical Systems, 24.Feb.2003 EJZ Schrödinger eqn in spherical coordinates Separation of variables (Prob.4.2 p.124) Angular equation.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
PHYS Quantum Mechanics
Modern physics and Quantum Mechanics Physical Systems, 8 Mar.2007 EJZ More angular momentum and H atom Compare to Bohr atom Applications: Bohr magneton,
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Gavin Smith Nuclear Physics Group These slides at:
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Spin and addition of angular momentum
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Quantum Ch.4 - continued Physical Systems, 27.Feb.2003 EJZ Recall solution to Schrödinger eqn in spherical coordinates with Coulomb potential (H atom)
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Sean Freeman Nuclear Physics Group These slides at:
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Spin-Orbit Effect In addition to its motion about the nucleus, an electron also has an intrinsic angular momentum called “spin” similar to the earth moving.
Wave mechanics in potentials Modern Ch.4, Physical Systems, 30.Jan.2003 EJZ Particle in a Box (Jason Russell), Prob.12 Overview of finite potentials Harmonic.
Quantum mechanics review. Reading for week of 1/28-2/1 – Chapters 1, 2, and 3.1,3.2 Reading for week of 2/4-2/8 – Chapter 4.
Chapter 41 Atomic Structure
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Atomic Orbitals, Electron Configurations, and Atomic Spectra
Physics 451 Quantum mechanics I Fall 2012 Nov 12, 2012 Karine Chesnel.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Postulates Postulate 1: A physical state is represented by a wavefunction. The probablility to find the particle at within is. Postulate 2: Physical quantities.
Quantum mechanics unit 2
Phys 102 – Lecture 26 The quantum numbers and spin.
Lecture VIII Hydrogen Atom and Many Electron Atoms dr hab. Ewa Popko.
An Electron Trapped in A Potential Well Probability densities for an infinite well Solve Schrödinger equation outside the well.
6.852: Distributed Algorithms Spring, 2008 April 1, 2008 Class 14 – Part 2 Applications of Distributed Algorithms to Diverse Fields.
LECTURE 21 THE HYDROGEN AND HYDROGENIC ATOMS PHYSICS 420 SPRING 2006 Dennis Papadopoulos.
Lecture 28 Hydrogen 3d, 4s and 4p 4s 3d 4p We can get some insight into the relative Energies of these three orbitals from the website:
Hydrogen Atom and QM in 3-D 1. HW 8, problem 6.32 and A review of the hydrogen atom 2. Quiz Topics in this chapter:  The hydrogen atom  The.
Modern Physics (II) Chapter 9: Atomic Structure
Quantum mechanics unit 2
Quantum Chemistry: Our Agenda (along with Engel)
Physics 451 Quantum mechanics I Fall 2012 Nov 20, 2012 Karine Chesnel.
Germano Maioli Penello Chapter 7 Magnetism in the localised electron model Presentation based on the book Magnetism: Fundamentals, Damien Gignoux & Michel.
Modern Physics Ch.7: H atom in Wave mechanics Methods of Math. Physics, 27 Jan 2011, E.J. Zita Schrödinger Eqn. in spherical coordinates H atom wave functions.
Hydrogen Atom PHY Outline  review of L z operator, eigenfunction, eigenvalues rotational kinetic energy traveling and standing waves.
Lecture 22 Spin-orbit coupling. Spin-orbit coupling Spin makes an electron act like a small magnet. An electron orbiting around the nucleus also makes.
Nanoelectronics Chapter 3 Quantum Mechanics of Electrons
Postulates Postulate 1: A physical state is represented by a wavefunction. The probablility to find the particle at within is. Postulate 2: Physical quantities.
Group theory and intrinsic spin; specifically, s=1/2
Quantum Mechanics of Angular Momentum
Hydrogen Revisited.
Perturbation Theory Lecture 2 continue Books Recommended:
Hydrogen Atom PHY
Central Potential Another important problem in quantum mechanics is the central potential problem This means V = V(r) only This means angular momentum.
Hydrogen Atom Returning now to the hydrogen atom we have the radial equation left to solve The solution to the radial equation is complicated and we must.
QM2 Concept Test 2.1 Which one of the following pictures represents the surface of constant
Total Angular Momentum
Group theory and intrinsic spin; specifically, s=1/2
QM2 Concept Test 11.1 In a 3D Hilbert space,
“Addition” of angular momenta – Chap. 15
Presentation transcript:

PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10) These slides at: Lecture 19

Syllabus 1.Basics of quantum mechanics (QM) Postulate, operators, eigenvalues & eigenfunctions, orthogonality & completeness, time-dependent Schrödinger equation, probabilistic interpretation, compatibility of observables, the uncertainty principle. 2.1-D QM Bound states, potential barriers, tunnelling phenomena. 3.Orbital angular momentum Commutation relations, eigenvalues of L z and L 2, explicit forms of L z and L 2 in spherical polar coordinates, spherical harmonics Y l,m. 4.Spin Noncommutativity of spin operators, ladder operators, Dirac notation, Pauli spin matrices, the Stern-Gerlach experiment. 5.Addition of angular momentum Total angular momentum operators, eigenvalues and eigenfunctions of J z and J 2. 6.The hydrogen atom revisited Spin-orbit coupling, fine structure, Zeeman effect. 7.Perturbation theory First-order perturbation theory for energy levels. 8.Conceptual problems The EPR paradox, Bell’s inequalities.

Plan: Include coupling of orbital and spin angular momenta in Hamiltonian for hydrogen atom L S

6. The hydrogen atom revisited - Reminder of eigenfunctions, eigenvalues and quantum numbers n, l, m l of hydrogen atom. 6.1 Spin-orbit coupling and the fine structure. 6.2 Zeeman effect for single electron atoms in (a) a weak magnetic field (b) a strong magnetic field 6.3 Spin in magnetic field: QM and classical descriptions

Recap: Brief reminder of QM description of hydrogen atom TISE V(r) = -e 2 /4π ε o r Remember Angular part written: Solve by separation of variables: To get radial equation

Eigenenergies E n = E 1 /n 2 where E 1 = eV n = 1, 2, 3, 4…. Allowed values of l : l = 0, 1, 2, 3…, (n-1). Allowed values of l z : m l = + l, l -1, l -2,…., 0, -1, …, - l (2 l +1 values)