Workshop Tutorial Polish Cytometry Society 1998 Analysis of flow cytometric data - data collection, principles of gating and histogram analysis This presentation.

Slides:



Advertisements
Similar presentations
Introduction to Flow Cytometry
Advertisements

DNA cell cycle analysis is affected both by the type of instrument used and the binding dye Ryan Duggan and David Leclerc The University of Chicago Flow.
Slide 1, 4/12/2015 of DNA.ppt  Purdue University Cytometry Laboratories DNA1.ppt.
Data Analysis % Total Mean Geometric mean CV % of Parent Mode Median
ACQUISITION RATES EFFECT ON MULTIPARAMETRIC RARE EVENT ANALYSIS : AN INSTRUMENT COMPARISON John Tigges, Vasilis Toxavidis, Heidi Mariani Beth Israel Deaconess.
CHAPTER 37 MLAB 1415 HEMATOLOGY JOANNA ELLIS, MLS(ASCP) Optical Light Scatter and Flow Cytometry.
Introduction To Flow Cytometry:
Advancements in FACS analyzers optical design leads to greater functionality and a smaller footprint. INTRODUCTION In the past decade, instrumentation.
COMPENSATION By: Ronald Mathieu. Compensation Why do we need compensation? –1) Because of long emission spectrum of dyes like FITC and PE.
DCFH-DA DCFH-DA DCFH DCF H O Oxidative Burst.
Page 1 © J.Paul Robinson, Purdue University BMS 602 LECTURE 9.PPT BMS LECTURE 10x Flow Cytometry: Theory Bindley Bioscience Center Purdue.
Current Research Applications of Flow Cytometry and Cell J.Paul Robinson Professor of Immunopharmacology Professor of Biomedical Engineering Purdue University.
FLOW CYTOMETRY Dr. MOHAMMED H SAIEMA LDAHR KAAU FACULTY OF APPLIED MEDICAL SCIENCES MEDICAL TECHNOLOGY DEPT. 2 ND YEAR MT INSTROMINTATION EXT
Page 1 © J.Paul Robinson, Purdue University Cytometry Laboratories BMS 602 LECTURE 9.PPT BMS LECTURE 9 Flow Cytometry: Theory Hansen Hall,
The WEB version of these slides can be found on
Flow Cytometry. Allows For Detection Of Surface Markers Of Cells Allows For Detection Of Intracellular Factors Allows Detection Of Secreted Factors By.
Flow Cytometry and Sorting Part 2 Lecture Notes for “Fluorescence Spectroscopy in Biological Research” Robert F. Murphy, October 1996.
Page 1 © J.Paul Robinson, Purdue University BMS 631 – LECTURE007.PPT BMS 602/631 - LECTURE 8 Flow Cytometry: Theory J. Paul Robinson Professor.
Probability and Statistics in Engineering Philip Bedient, Ph.D.
FACSCalibur Training General Information The FACSCalibur is a useful analysis tool. The instrument has 2 lasers- 488 (primary) and 633 (secondary) that.
Basics of Flow Cytometry Holden Maecker. Outline Definitions, what can be measured by flow cytometry Fluidics: Sheath and sample streams, flow cells,
These particles have something in common
Introduction to Flow Cytometry
Practical molecular biology PD Dr. Alexei Gratchev Prof. Dr. Julia Kzhyshkowska Prof. Dr. Wolfgang Kaminski.
1. An Overview of the Data Analysis and Probability Standard for School Mathematics? 2.
Introduction to Systems Analysis and Design Trisha Cummings.
Cell viability studies Sepideh Khoshnevis. The Goal To distinguish live cells from dead and apoptotic cells in order to calculate the the percentage of.
+ - Cell Sorting LASER. Cell Sorting + - LASER Zhang at al, Blood 2003, 102: Flow cytometry analysis of mouse fetal liver cells. Mouse fetal.
Emily Salmon Advisors: Norman Purvis, PhD, Esoterix Dr. Paul King, Vanderbilt University Development, Simulation and Optimization of Oncology Laboratory.
Flow Cytometry at Boston University Medical Campus Introduction to some methods that we offer Yan Deng (X4-5225), Gerald Denis (X4-1371),
Instrumentation (cont.) February 28 Note: Measurement Plan Due Next Week.
Introduction To Flow Cytometry By Noha Kamel. Flow cytometry is a method of measuring multiple physical and chemical characteristics of particles by optical.
Dr Gihan Gawish Hydrodynamic focusing is a technique used to provide more accurate results from flow cytometers or Coulter counters for determining the.
Basic Principles in Flow Cytometry
Automated CBC Parameters
Automated CBC Parameters
Basic Principles, Instrumentation, and Practices
Turbidity Measurement By Douglas Rittmann, Ph.D., P.E. Water/Wastewater Consultant To UTEP Laboratory Course On February 21, 2006.
Flow Cytometry Principles & practice of “Fluorescence Spectroscopy in Biological Diagnosis & Research” Dr.Hekmatimoghaddam Assistant professor of pathology.
Fundamentals of Data Analysis Lecture 3 Basics of statistics.
Laser Flow Cytometry Forward Scatter indicates size Forward Scatter.
Flow Cytometry Basic Training. What Is Flow Cytometry? Flow ~ cells in motion Cyto ~ cell Metry ~ measure Measuring properties of cells while in a fluid.
Flow Cytometry Becton Dickinson Asia Limited Company.
Software for Flow Cytometry Data Analysis Hélène Dujardin, PhD TreeStar / Celeza GmbH.
WBC and Differential measurement
Quality Controls: Get your instruments under control!
© 2015 by Wade Rogers Introduction to R Cytomics Workshop December, 2015.
Basic Research Terms and Methods Goals of psychological research Measurement and description of behavior Understanding and prediction of behavior Application.
Introduction to System Analysis and Design MADE BY: SIR NASEEM AHMED KHAN DOW VOCATIONAL & TECHNICAL TRAINING CENTRE.
Flow Cytometry Basics: What, How and Why? KAM TJU FCM SciGro, Inc. Flow Cytometry: The 30,000 Foot View What?  High speed, low resolution measurement.
Chapter 1: The Nature of Analytical Chemistry
FACSCalibur Training General Information
بسم الله الرحمن الرحیم.
Flowcytometry.
Volume 125, Issue 2, Pages (August 2003)
COMPENSATION + FITC - PE - + PE - FITC - FITC detector FITC PE
Reduced TH1/TH17 CD4 T-cell numbers are associated with impaired purified protein derivative–specific cytokine responses in patients with HIV-1 infection 
Introduction to Systems Analysis and Design
Some Basic Physics & Optics
Flow Cytometry and Sorting Part 3
Tree Net algorithm contruction
Optical measurement.
Flow cytometric analysis of putative progenitor cells.
The Art of Flow Cytometry
This presentation will be placed on the WWW at the following address:
Volume 125, Issue 2, Pages (August 2003)
Flow Cell Injector Tip Fluorescence signals Focused laser beam Sheath
S.varasteh 10/11/2012.
Flow Cell Injector Tip Fluorescence signals Focused laser beam Sheath
Presentation transcript:

Workshop Tutorial Polish Cytometry Society 1998 Analysis of flow cytometric data - data collection, principles of gating and histogram analysis This presentation will be placed on the WWW at the following address: J.Paul Robinson, Ph.D.

Data Analysis Data acquisition vs. data analysis Data analysis software Data display Establishing regions and gating Analysis methods that can change results

Data Acquisition Each measurement from each detector is referred to as a “parameter” or “variable” Data are acquired as a “list” of the values for each “parameter” (variable) for each “event” (cell) [RFM]

Data Analysis Software Instrument Software Elite 4.0Coulter Bryte HS 2.0 Bio-Rad Lysis IIBecton-Dickinson Commercial Sources WinList & Modfit LT Verity Software ListView & Multicycle Phoenix Software Free Flow Software WinMDIWeb

Pros & Cons of Free Flow Software Advantages: works with listmode files from many types of aquisition software source code is available many people use these packages FREE!!!!! Disadvantages: little or no technical support little or no documentation often no tutorials BUGS!! Don’t forget to mention that the CDROM has all the free software on it!!!

Flow Cytometer Computer Files Listmode files -correlated data file where each event is listed sequentially, parameter by parameter -large file size Histogram files ­uncorrelated data used for display only Flow cytometry standard (FCS 2.0) ­format used to save data ­use other software programs to analyze data

Types of Listmode data Ungated Listmode Gated Listmode collection

Data Acquisition - Listmode [RFM]

Listmode File FILEVERSION;1.15 BTRIEVE; IBA13-2 collected 6/27/95;28/6/1995;;2;1 PARAM;LS1;400;LS2;600;FL1;460;FL2;400;FL3;300;WID;TIM GAIN;1;1;2;2;0 THRES;0;10;0;5;0;5;1;11;0;5 FLUIDIC;3;4;1;7.20 FCM;357;2;2;1;1;0;0;1;1;1;1;0;1;1;0;1 SUBTRACT;15;0 AUTOCYCLE;1;0;0;0;0;0;0;-1;1;20000;7;0;1;0;1;0 PCBUFFER;374000;1 SERIAL;2 ADBOARD;1;0;0;30;0 PEAKAREA;0;0;0;0 CALIBRATION;300;300;300;300;0;0;0;0 MAINWINDOW;1 PRINTHEADER; Flow cytometry Report;Win-Bryte software - Bryte-HS flow cytometer PRINTFOOTER; Purdue University Cytometry Laboratories PRINTSTATISTICS;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;0;0;1;20;15;1;8;12;5;0;0;5 ROI;1;1;3;3;4;45;65;61;65;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;bird;1;1;1;0;1;1;1;0;1;1;0;;-1;-1;3;0;255;0;0 ROI;2;1;3;3;0;121;41;141;41;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;human;1;1;1;0;1;1;1;0;1;1;0;;-1;-1;3;0;255;0;0 ROI;7;3;5;1;0;0;18;24;63;52;48;16;2;0;2;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;;1;1;1;0;1;1;1;0;1;1;0;;-1;-1;3;5;255;0;0 ROIDATACYTO;7;20022;4845.7;98.7;0.0 ROIDATAHIST;1;2.4;16712;52;53;4044.6;2.4;53;83.5;0.0 ROIDATAHIST;2;2.2;1875;128;128;531.3;1.7;128;7.8;0.0 HISTOGRAM;FALS;24;49;290;320;256;0;Count;1;1;0;0;0;255;0;255;0;0;0;0;0;255;1;1;C;0;1;1;1;S;0;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;1;1;1;255;0;255 HISTOGRAM;SIDE-SCATTER;290;49;556;320;256;1;Count;1;1;0;0;0;255;0;255;0;0;0;0;0;255;1;1;C;0;1;1;1;S;0;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;- 1;1;1;1;255;0;255 CYTOGRAM;LS1-LS2;24;320;290;591;64;1;0;1;1;0;0;0;255;0;255;0;0;0;0;0;0;1;1;O;0;1;0;0;S;0;6;-1;-1;-1;-1;-1;-1;-1;-1;-1;6;-1;- 1;1;0;1;0;A;B;C;D;1;1;255;0;0;32;32;0;255;0;255 HISTOGRAM;FL2;290;320;556;591;256;3;Count;1;1;0;0;0;255;0;255;0;0;0;255;0;0;1;1;C;10;1;1;1;S;0;0;1;-1;-1;-1;-1;-1;-1;-1;-1;0;7;-1;1;1;1;255;0;255 CYTOGRAM;FL2-TIM;556;320;822;591;64;6;3;1;1;0;0;0;255;0;255;0;0;0;0;0;0;1;1;I;0;1;0;0;S;0;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;-1;- 1;1;0;1;0;A;B;C;D;1;1;255;0;0;32;32;0;255;0;255 LISTDATA 226;0;426;426;243;81;0 412;225;8;426;426;239;0 380;262;2;427;427;245;0 578;348;0;412;412;239;0 529;377;0;431;431;240;0 420;203;0;438;438;243;0 444;221;0;427;0;240;0 383;215;0;421;421;238;0 735;716;0;1027;1027;280;0 499;228;0;431;431;239;0 531;328;0;433;433;241;0 520;218;0;423;423;243;0 471;252;0;425;425;244;0 652;298;0;441;441;240;0 561;291;0;421;421;240;0 608;307;0;415;415;241;0 541;231;0;424;424;245;0

Listmode data Analysis 226;0;426;426;243;81;0 PARAM;LS1;400;LS2;600;FL1;460;FL2;400;FL3;300;WID;TIM LS1LS2FL1FL2FL3WIDTIM

One parameter frequency histogram establish regions and calculate coefficient of variation (cv) cv = stdev/mean of half peak # of events for particularparameter

Establishing Regions Establishing regions: -objective or subjective? -training/skill/practice Possible shapes: -rectangles -ellipses -free-hand -quadrants Statistics R1

Gating Real-time gating vs. software gatingReal-time gating vs. software gating Establishing regionsEstablishing regions Gating strategiesGating strategies Quadrant analysisQuadrant analysis Complex or Boolean gatesComplex or Boolean gates Back gatingBack gating

Real-Time vs. Software Gating Real-time or live gating: -restrict the data that will be accepted by a computer (some characteristic must be met before data is stored) (This is not encouraged) Software or analysis gating: -excludes certain stored data from a particular analysis procedure

Region 1 established Gated on Region 1 Using Gates log PE R1

90 Degree Scatter Lymphocytes Monocytes Neutrophils Side Scatter Projection Light Scatter Gating Scale

log PE Back gate 1P Fluorescence 2P Fluorescence 2P Scatter 90 deg Scatter FALS Scatter Forward gate

Quadrant Analysis The Square Cell Principle Is It necessary? Why is it used?

Quadrant Analysis log PE (+ +)( - +) (+ -) (- -) Log FITC (525 nm) Log PE (575 +/- 20 nm)

Complex or Boolean Gating With two overlapping regions, several options are available: R1R2

Boolean Gating Not Region 2:

Boolean Gating Region 1 or Region 2:

Boolean Gating Region 1 and Region 2:

Not (Region1 and Region 2): Boolean Gating

Back Gating Region 4 established Backgating using Region 4 log PE Back gate

Drawing Regions: Sample Preparation Sample Quality B.subtilis sporesB.subtilis veg. + spores Debris Spores Debris Vegetative log

FITC + PE+ FITC+ APC+ PE + APC+ Multi Parameter Data Display

Methods that can change results: 1. Doublet discrimination 2. Time as a quality control parameter Example: DNA content -need to eliminate debris & clumps -need to gate out doublets -maintain constant flow rate

Peak Fluorescence Integral Fluorescence Doublet Discrimination - selection at the time of collection - 1:1 ratio

A B Time as a quality Control Parameter “blockage” data can be removed by gating the time histogram. Abnormal histogram caused by turbulence (not biological variation) Normalized histogram after subtraction of list mdoe data collected during the blockage shown at B on right.

Conclusion This workshop has discussed the following ideas: 1. Nature of data 2. Analysis software and techniques 3. Gating and region definition 4. Forward and Back gating 5. Boolean operators on flow data 6. Quality control systems