Bérengère Parise Testing grain surface chemistry models using deuterated probes in low-mass star-forming regions. Bonn, Germany.

Slides:



Advertisements
Similar presentations
The Water D/H Ratio in Molecular Outflows in Orion BN/KL Shiya Wang Astronomy Department, University of Michigan Edwin A. Bergin (U. of Michigan) René
Advertisements

Astrochemistry Panel Members: Jacqueline Keane Hideko Nomura Ted Bergin Tatsuhiko Hasegawa Karin Öberg Yi-Jehng Kuan.
Nuria Marcelino (NRAO-CV) Molecular Line Surveys of Dark Clouds Discovery of CH 3 O.
Peter Schilke Submillimeter Astronomy June 15, 2005 Line Surveys Peter Schilke, MPIfR.
Jonathan Rawlings (Lured over to the dark side by Neal Evans) University College London.
Odin’s Hunt for Molecules cooperation between Canada, Finland, France and Sweden.
Chemical evolution from cores to disks
Jeong-Eun Lee Kyung Hee University University of Texas at Austin.
Observations of deuterated molecules as probes of the earliest stages of star formation. Helen Roberts University of Manchester.
M. Emprechtinger, D. Lis, P. Schilke, R. Rolffs, R. Monje, The Chess Team.
High resolution (sub)millimetre studies of the chemistry of low-mass protostars Jes Jørgensen (CfA) Fredrik Schöier (Stockholm), Ewine van Dishoeck (Leiden),
Comets with ALMA N. Biver, LESIA, Paris Observatory I Comets composition Chemical investigation and taxonomy Monitoring of comet outgassing II Mapping.
Chemistry in low-mass star forming regions: ALMA ’ s contribution Yuri Aikawa (Kobe Univ.) Collaborators: Hideko Nomura (Kobe Univ.) Hiroshi Koyama (Kobe.
The ortho-H 2 abundance and the age of molecular clouds Laurent Pagani LERMA, UMR8112 du CNRS, Observatoire de Paris.
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Chemistry and line emission of outer protoplanetary disks Inga Kamp Introduction to protoplanetary disks and their modeling Introduction to protoplanetary.
SMA Observations of High Mass Protostellar Objects (HMPOs) Submm Astronomy in Era of SMA June 15, 2005 Crystal Brogan (U. of Hawaii) Y. Shirley (NRAO),
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Adwin Boogert Geoff Blake Michiel Hogerheijde Caltech/OVRO Univ. of Arizona Tracing Protostellar Evolution by Observations of Ices.
Complex organic molecules in hot corinos
The abundances of gaseous H 2 O and O 2 in dense cloud cores Eric Herbst & Helen Roberts The Ohio State University.
Jan/2005Interstellar Ices-I1 Interstellar Ices-2 Ice Inventory Protostellar Environments Energetic Processing? Laboratory Simulations New Spitzer Satellite.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY Gas and Dust (Interstellar) Astrochemistry.
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions II. Chemistry.
Collaborators : Valentine Wakelam (supervisor)
A Search for Hydroxlyamine (NH 2 OH) Towards IRC+10216, Orion-S, Orion(KL), SgrB2(N), SgrB2(OH), W512M, W3(IRS5) R. L. Pulliam NRAO / North American ALMA.
Chemical Models of High Mass Young Stellar Objects Great Barriers in High Mass Star Formation H. Nomura 1 and T.J. Millar 2 1.Kyoto Univ. Japan, 2. Queen’s.
The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.
The properties of starless cores in intermediate-/high-mass protoclusters Francesco Fontani European Southern Observatory (ESO) Institut de RadioAstronomie.
Qiang Chang, Eric Herbst Chemistry department, University of Virginia
Unbiased Spectral Survey of the low mass protostar IRAS A
Astrochemistry University of Helsinki, December 2006 Lecture 1 T J Millar, School of Mathematics and Physics Queen’s University Belfast,Belfast BT7 1NN,
Summary  We have implemented numerically stable, continuous method of treating condensation on to grains in Titan’s atmosphere.  Our model can establish.
Introduction to Astrochemistry
The Distribution of Astronomical Aldehydes – The Case for Extended Emission of Acetaldehyde (CH 3 CHO). Andrew Burkhardt 1,2 Ryan Loomis 3, Niklaus Dollhopf.
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Astrochemistry Les Houches Lectures September 2005 Lecture 1
Deuterated molecules: a chemical filter for recently evaporated gas Francesco Fontani (INAF-OAA) C. Codella, C. Ceccarelli, B. Lefloch, M.E. Palumbo …
ASIAA Interferometry Summer School – 2006 Introduction – Radio Astronomy Tatsuhiko Hasegawa (ASIAA) 1. Atmospheric window to the electromagnetic waves.
“The Dusty and Molecular Universe” October 2004
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
Testing grain-surface chemistry in massive hot-core regions and the laboratory (A&A, 465, 913 and A&A submitted) Suzanne Bisschop Jes Jørgensen, Ewine.
Astrochemistry University of Helsinki, December 2006 Lecture 3 T J Millar, School of Mathematics and Physics Queen’s University Belfast,Belfast BT7 1NN,
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Copyright All rights reserved. June 25, 2015ISMS, 2015
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Warm, Dense Gas Near the Massive Protostar AFGL 2136 IRS 1 as Revealed by Absorption from the ν 1, ν 2, and ν 3 Bands of Water Nick Indriolo 1, David Neufeld.
Searching for massive pre-stellar cores through observations of N 2 H + and N 2 D + (F. Fontani 1, P. Caselli 2, A. Crapsi 3, R. Cesaroni 4, J. Brand 1.
ASTROPHYSICAL MODELLING AND SIMULATION Eric Herbst Departments of Physics, Chemistry, and Astronomy The Ohio State University.
Helen Roberts University of Manchester
Some Chemistry in Assorted Star-forming Regions Eric Herbst.
ISM & Astrochemistry Lecture 4. Nitrogen Chemistry (dark clouds) H N  NH + + H 2 Endothermic by ~ 100K N + + H 2  NH + + HEndothermic So, at low.
R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl.
Walsh, Millar & Nomura, ApJL, 766, L23 (2013)
First Measurement of the HDO/H 2 O ratio in a Jupiter Family Comet N. Biver and D. Bockelée-Morvan,… LESIA, Observatoire de Paris Based on Hartogh et al.
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
Complex Organic Molecules formation on Interstellar Grains Qiang Chang Xinjiang Astronomical Observatory Chinese Academy of Sciences April 22, 2014.
First Detection of OD outside the Solar System
First Detection of OD outside the Solar System
Molecules: Probes of the Interstellar Medium
Methanol emission from low mass protostars
The chemistry and stability of the protoplanetary disk surface
Astrochemical modeling of Planck cold clump G
Presentation transcript:

Bérengère Parise Testing grain surface chemistry models using deuterated probes in low-mass star-forming regions. Bonn, Germany

Bérengère Parise - Max Planck Institut für Radioastronomie 2 Introduction For 30 years, observations in the ISM have shown fractionations XD/XH  [D]/[H] (~ ) D 2 CO/H 2 CO ~ 0.05 towards the low-mass protostar IRAS16293 (Ceccarelli et al. 1998, A&A 338, L43) (figure : M.R. Hogerheijde in van Dishoeck & Blake 1998) D 2 CO/H 2 CO ~ in Orion (Turner, 1990, ApJ 362, L29)  Active grain chemistry

Bérengère Parise - Max Planck Institut für Radioastronomie 3 Chemical processes Gas phase reactions ? Grain surface reactions ? (e.g. Roberts & Millar 2000, A&A 361, 398) (e.g. Tielens 1983, A&A 119, 177) Desorption Prestellar core phase Envelope heated by the protostar

Bérengère Parise - Max Planck Institut für Radioastronomie 4 Tielens & Hagen, 1982, A&A 114, 245 Tielens, 1983, A&A 119, 177 Fractionation due to : enhanced atomic D/H ratio in the gas phase (D formed from H 2 D + )  requires CO depletion and low temperature lower activation barriers for reactions involving D CO H 2 CO Roberts & Millar 2000, A&A 361, 398 Roberts & Millar 2000, A&A 364, 780 H HD  H 2 D + + H 2 root reaction : H 2 D + propagates the deuterium to other molecules Adsorption in grain mantles Required physical conditions low temperature CO depletion Gas phase versus grain chemistry

Bérengère Parise - Max Planck Institut für Radioastronomie 5 Charnley et al. 1997, AJ 482, L203 A test for surface chemistry ?

Bérengère Parise - Max Planck Institut für Radioastronomie 6 Deuterated methanol in IRAS16293 Parise et al. 2002, A&A 393, L49 Parise et al. 2004, A&A, 416, 159 IRAM 30m observations 23 CH 2 DOH lines 6 CH 3 OD lines 15 CHD 2 OH lines 12 CD 3 OH lines

Bérengère Parise - Max Planck Institut für Radioastronomie f(CH 2 DOH) = 37 % f(CH 3 OD) = 1.8 % f(CHD 2 OH) = 7.4 % f(CD 3 OH) = 1.0 % -0.6 IRAS Population diagrams

Bérengère Parise - Max Planck Institut für Radioastronomie 8 requires an atomic D/H ratio ~ in the gas phase. This atomic fractionation is now reproduced by new generation models including D 2 H + and D 3 + (e.g. Roberts et al. 2003) See poster by Vastel et al. CH 2 DOH/CH 3 OD very high compared with the statistical ratio 3 CH 3 OD destroyed in the gas phase by protonation ? CH 3 ODH +  CH 3 OH + D + e - CH 3 OD + H + e - confirmed by Osamura et al dashed lines : surface chemistry model Stantcheva et al. 2003, MNRAS 340, 983 red : IRAS observations Comparison to grain chemistry models

Bérengère Parise - Max Planck Institut für Radioastronomie 9 challenged by Dartois et al. (on the edge of one SWS detector) VLT observation on W33A : HDO / H 2 O < (Dartois et al. 2003, A&A 399, 1009) Inconclusive mostly because high-mass protostars show a lower degree of deuteration than low-mass protostars ? Grain surface model predictions : HDO / H 2 O ~ 20 % What about looking directly on the grains ? Observations in solid phase are less sensitive than gas phase observations. H 2 O : main constituent of icy mantles around dust grains. Search for HDO in the ices Previous attempts : Detection of HDO in high mass protostars W33A et NGC7538 IRS9 (Teixeira et al., 1999, A&A, L19-L22)

Bérengère Parise - Max Planck Institut für Radioastronomie 10 Recherche de HDO en phase solide sur les grains Observation of OD and OH stretch bands (in absorption) at 4.1 and 3  m with SpeX on IRTF (Mauna Kea) R = 1500 CH 3 D:O 2 -1:1 ice before and after UV irradiation (Dartois et al 2000) Search for solid HDO in low-mass protostars grain mantles

Bérengère Parise - Max Planck Institut für Radioastronomie 11 Parise et al. 2003, A&A 410, class I protostars bright in NIR high J-K extinction D 2 CO/H 2 CO ~ 5% Solid phase HDO/H 2 O (1)

Bérengère Parise - Max Planck Institut für Radioastronomie 12 Solid phase HDO/H 2 O (2) HDO/H 2 O ≤ ~ 1% Does this exclude grain surface chemistry for deuteration ? Or has water a different fractionation than methanol ?

Bérengère Parise - Max Planck Institut für Radioastronomie 13 Deuterated water in the gas phase IRAS Observations JCMT IRAM Frequency (GHz) E up (K) JCMT and IRAM observations ON-source & outflow 5 lines detected on-source no emission detected towards the outflow.

Bérengère Parise - Max Planck Institut für Radioastronomie 14 Deuterated water in IRAS Modelling T ev = 100 K R x in x out inner envelope : HDO/H 2 O = 3% outer envelope : HDO/H 2 O < 0.2 % Model of envelope emission from Ceccarelli, Hollenbach & Tielens 1996: density structure : inside-out collapse (Shu scenario). gas temperature computed self-consistently : cooling depends on CO, O and H 2 O abundance. Adapted to HDO study : collision coefficients from Green (1989) use of the density and temperature profiles as well as water abundance derived by Ceccarelli et al. (2000). HDO abundance : Parise et al. 2005, A&A 431, 547

Bérengère Parise - Max Planck Institut für Radioastronomie 15 Deuterated methanol observations : IRAS CH 2 DOH/CH 3 OH = 37 % CH 3 OD/CH 3 OH = 1.8 % CHD 2 OH/CH 3 OH = 7.4 % CD 3 OH/CH 3 OH = 1.0 % Consistent with grain chemistry models, but :  these models require a high atomic D/H ratio in the gas phase, which can only occur when CO is heavily depleted.  these models predict HDO/H 2 O ~ 20 % HDO observation in grain mantles : NGC1333 SVS12, SVS13, L1489 IRS, TMR1 HDO/H 2 O ≤ 1 %... HDO observation in the gas phase : IRAS HDO/H 2 O = 3% in the inner enveloppe HDO/H 2 O < 0.2 % in the outer enveloppe. Questions raised by single dish observations

Bérengère Parise - Max Planck Institut für Radioastronomie 16 Conclusions Modelling of the single-dish HDO emission points to a fractionation enhancement of water in the inner warm envelope (“hot corino”). Same for methanol ? Unfortunately such a modelling cannot be performed for CH 2 DOH because collision coefficients are not available. Moreover interferometric observations have shown that IRAS16293 is a binary with different chemical properties (PdBI, Bottinelli et al. 2004; SMA, Kuan et al. 2004, see poster by Huang et al). Accurate comparison to grain surface models can therefore only be done after observing the spatial distribution of deuterated methanol.

Special thanks to the organizers of this conference. Thanks to my collaborators : Cecilia Ceccarelli - Emmanuel Caux Eric Herbst - A.G.G.M. Tielens Alain Castets - Bertrand Lefloch And all the WAGOS group Ted Simon - John Rayner Indra Mukhopadhyay Emmanuel Dartois - Laurent Loinard Peter Schilke - Karl Menten Operations at IRAM are funded by the CNRS (Centre National de la Recherche Scientifique, France), the MPG (Max Planck Gesellschaft, Germany), and the IGN (Instituto Geografico Nacional, Spain). The Infrared Telescope Facility is operated by the University of Hawaii under Cooperative Agreement no. NCC with the National Aeronautics and Space Administration, Office of Space Science, Planetary Astronomy Program. The James Clerk Maxwell Telescope (JCMT) is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council (PPARC), the National Research Council of Canada and the Netherlands Organisation for Pure Research. No animal was hurt during the preparation of this talk