Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Slides:



Advertisements
Similar presentations
Mass Relationships in Chemical Reactions
Advertisements

Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint.
Chapter 3 Mass Relationships in Chemical Reactions Semester 2/ Atomic Mass 3.2 Avogadro’s Number and the Molar Mass of an element 3.3 Molecular.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chapter 3 Stoichiometric Atomic Masses, Mole concept, and Molar Mass (Average atomic.
1 By definition: 1 atom 12 C “weighs” 12 amu On this scale 1 H = amu 16 O = amu Atomic mass is the mass of an atom in atomic mass units (amu)
1 Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound. 1Na22.99 amu 1Cl amu NaCl amu For any ionic.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chapter 3 Stoichiometric Atomic Masses, Mole concept, and Molar Mass (Average atomic.
Mass Relationships in Chemical Reactions Chapter 3.
1 Chapter 3 Stoichiometry. 2 Preview the contents of this chapter will introduce you to the following topics:  Atomic mass, Mole concept, and Molar mass.
Mass Relationships in Chemical Reactions Chapter 3.
Stoichiometry Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 化學劑量 : 化學反應的質量關係.
Mass Relationships in Chemical Reactions. Names associated with an amount Can you think of any more?????
Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations.
Formulas, Equations, and Moles
Mole Relationships. By definition: 1 atom 12 C “weighs” 12 amu Atomic mass is the mass of an atom in atomic mass units (amu) The mole (mol) is the amount.
Stoichiometry Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
The S-word Stoichiometry Chapter 3. By definition: 1 atom 12 C “weighs” 12 amu On this scale 1 H = amu 16 O = amu Atomic mass is the mass.
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions Chapter 3.
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint.
Mass Relationships in Chemical Reactions Chapter 3.
Chapter 3 Stoichiometric
Mass Relationships in Chemical Reactions. By definition: 1 atom 12 C “weighs” ________ On this scale 1 H = ________ amu 16 O = ________ amu _________________.
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
FORMULAS, EQUATIONS AND MOLES Mole Calculation Chapter 3.
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Imran Syakir Mohamad Chemistry DMCU Chemical Reaction Chapter 3 C2H6OC2H6O.
Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Stoichiometry Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mass Relationships in Chemical Reactions. By definition: 1 atom 12 C “weighs” 12 amu On this scale 1 H = amu 16 O = amu Atomic mass is the.
On this scale, 1 H = amu, 16 O = amu the mass of an atom in atomic mass units (amu). Atomic mass unit is defined as the mass exactly equal.
Dr. Laila Mohammed Al-Harbi Assistant professor Contact Info: Web Site:
1 By definition: 1 atom 12 C “weighs” 12 amu On this scale 1 H = amu 16 O = amu Atomic mass is the mass of an atom in atomic mass units (amu)
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acknowledgement.
Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 3 Mass Relationships in Chemical Reactions 1.
Problem 3.14 How many moles of cobalt (Co) atoms are there in 6.00 X109 (6 billion) Co atoms?
Mass Relationships in Chemical Reactions Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mass Relationships in Chemical Reactions Chapter 3.
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Reaction Types. Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations.
Stoichiometry Chapter 3
Stoichiometry Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Chapter 3 Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions: STOICHIOMETRY
Stoichiometry- Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Mass Relationships in Chemical Reactions
Presentation transcript:

Mass Relationships in Chemical Reactions Chapter 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

By definition: 1 atom 12 C “weighs” 12 amu On this scale 1 H = amu 16 O = amu Atomic mass is the mass of an atom in atomic mass units (amu) Micro World atoms & molecules Macro World grams 3.1

Natural lithium is: 7.42% 6 Li (6.015 amu) 92.58% 7 Li (7.016 amu) 7.42 x x = amu 3.1 Average atomic mass of lithium:

Average atomic mass (6.941)

The mole (mol) is the amount of a substance that contains as many elementary entities as there are atoms in exactly grams of 12 C mol = N A = x Avogadro’s number (N A )

Molar mass is the mass of 1 mole of in grams eggs shoes marbles atoms 1 mole 12 C atoms = x atoms = g 1 12 C atom = amu 1 mole 12 C atoms = g 12 C 1 mole lithium atoms = g of Li For any element atomic mass (amu) = molar mass (grams) 3.2

One Mole of: C S Cu Fe Hg 3.2

1 amu = 1.66 x g or 1 g = x amu 1 12 C atom amu x g x C atoms = 1.66 x g 1 amu 3.2 M = molar mass in g/mol N A = Avogadro’s number

x x atoms K 1 mol K = Do You Understand Molar Mass? How many atoms are in g of potassium (K) ? 1 mol K = g K 1 mol K = x atoms K g K 1 mol K g K x 8.49 x atoms K 3.2

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule. SO 2 1S32.07 amu 2O+ 2 x amu SO amu For any molecule molecular mass (amu) = molar mass (grams) 1 molecule SO 2 = amu 1 mole SO 2 = g SO 2 3.3

Do You Understand Molecular Mass? How many H atoms are in 72.5 g of C 3 H 8 O ? 1 mol C 3 H 8 O = (3 x 12) + (8 x 1) + 16 = 60 g C 3 H 8 O 1 mol H = x atoms H 5.82 x atoms H mol C 3 H 8 O molecules = 8 mol H atoms 72.5 g C 3 H 8 O 1 mol C 3 H 8 O 60 g C 3 H 8 O x 8 mol H atoms 1 mol C 3 H 8 O x x H atoms 1 mol H atoms x =

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound. 1Na22.99 amu 1Cl amu NaCl amu For any ionic compound formula mass (amu) = molar mass (grams) 1 formula unit NaCl = amu 1 mole NaCl = g NaCl 3.3 NaCl

Do You Understand Formula Mass? What is the formula mass of Ca 3 (PO 4 ) 2 ? formula unit of Ca 3 (PO 4 ) 2 3 Ca 3 x P2 x O + 8 x amu

KE = 1/2 x m x v 2 v = (2 x KE/m) 1/2 F = q x v x B 3.4 Light Heavy

Percent composition of an element in a compound = n x molar mass of element molar mass of compound x 100% n is the number of moles of the element in 1 mole of the compound C2H6OC2H6O %C = 2 x (12.01 g) g x 100% = 52.14%H = 6 x (1.008 g) g x 100% = 13.13%O = 1 x (16.00 g) g x 100% = 34.73% 52.14% % % = 100.0% 3.5

Percent Composition and Empirical Formulas Determine the empirical formula of a compound that has the following percent composition by mass: K 24.75, Mn 34.77, O percent. n K = g K x = mol K 1 mol K g K n Mn = g Mn x = mol Mn 1 mol Mn g Mn n O = g O x = mol O 1 mol O g O

3.5 Percent Composition and Empirical Formulas K : ~ ~ Mn : = 1.0 O : ~ ~ n K = , n Mn = , n O = KMnO 4

3.6 g CO 2 mol CO 2 mol Cg C g H 2 O mol H 2 Omol Hg H g of O = g of sample – (g of C + g of H) Combust 11.5 g ethanol Collect 22.0 g CO 2 and 13.5 g H 2 O 6.0 g C = 0.5 mol C 1.5 g H = 1.5 mol H 4.0 g O = 0.25 mol O Empirical formula C 0.5 H 1.5 O 0.25 Divide by smallest subscript (0.25) Empirical formula C 2 H 6 O

3.7 3 ways of representing the reaction of H 2 with O 2 to form H 2 O A process in which one or more substances is changed into one or more new substances is a chemical reaction A chemical equation uses chemical symbols to show what happens during a chemical reaction reactantsproducts

How to “Read” Chemical Equations 2 Mg + O 2 2 MgO 2 atoms Mg + 1 molecule O 2 makes 2 formula units MgO 2 moles Mg + 1 mole O 2 makes 2 moles MgO 48.6 grams Mg grams O 2 makes 80.6 g MgO IS NOT 2 grams Mg + 1 gram O 2 makes 2 g MgO 3.7

1.Write balanced chemical equation 2.Convert quantities of known substances into moles 3.Use coefficients in balanced equation to calculate the number of moles of the sought quantity 4.Convert moles of sought quantity into desired units Amounts of Reactants and Products 3.8

Methanol burns in air according to the equation 2CH 3 OH + 3O 2 2CO 2 + 4H 2 O If 209 g of methanol are used up in the combustion, what mass of water is produced? grams CH 3 OHmoles CH 3 OHmoles H 2 Ograms H 2 O molar mass CH 3 OH coefficients chemical equation molar mass H 2 O 209 g CH 3 OH 1 mol CH 3 OH 32.0 g CH 3 OH x 4 mol H 2 O 2 mol CH 3 OH x 18.0 g H 2 O 1 mol H 2 O x = 235 g H 2 O 3.8

Limiting Reagents 3.9 2NO + 2O 2 2NO 2 NO is the limiting reagent O 2 is the excess reagent

Do You Understand Limiting Reagents? In one process, 124 g of Al are reacted with 601 g of Fe 2 O 3 2Al + Fe 2 O 3 Al 2 O 3 + 2Fe Calculate the mass of Al 2 O 3 formed. g Almol Almol Fe 2 O 3 neededg Fe 2 O 3 needed OR g Fe 2 O 3 mol Fe 2 O 3 mol Al neededg Al needed 124 g Al 1 mol Al 27.0 g Al x 1 mol Fe 2 O 3 2 mol Al x 160. g Fe 2 O 3 1 mol Fe 2 O 3 x = 367 g Fe 2 O 3 Start with 124 g Alneed 367 g Fe 2 O 3 Have more Fe 2 O 3 (601 g) so Al is limiting reagent 3.9

Use limiting reagent (Al) to calculate amount of product that can be formed. g Almol Almol Al 2 O 3 g Al 2 O g Al 1 mol Al 27.0 g Al x 1 mol Al 2 O 3 2 mol Al x 102. g Al 2 O 3 1 mol Al 2 O 3 x = 234 g Al 2 O 3 2Al + Fe 2 O 3 Al 2 O 3 + 2Fe 3.9

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted. Actual Yield is the amount of product actually obtained from a reaction. % Yield = Actual Yield Theoretical Yield x Reaction Yield

Solution Stoichiometry The concentration of a solution is the amount of solute present in a given quantity of solvent or solution. M = molarity = moles of solute liters of solution What mass of KI is required to make 500. mL of a 2.80 M KI solution? volume of KI solutionmoles KIgrams KI M KI 500. mL= 232 g KI 166 g KI 1 mol KI x 2.80 mol KI 1 L soln x 1 L 1000 mL x 4.5

Dilution is the procedure for preparing a less concentrated solution from a more concentrated solution. Dilution Add Solvent Moles of solute before dilution (i) Moles of solute after dilution (f) = MiViMiVi MfVfMfVf = 4.5

How would you prepare 60.0 mL of M HNO 3 from a stock solution of 4.00 M HNO 3 ? M i V i = M f V f M i = 4.00 M f = 0.200V f = 0.06 L V i = ? L 4.5 V i = MfVfMfVf MiMi = x = L = 3 mL 3 mL of acid + 57 mL of water= 60 mL of solution