Computer Communication 2004-51 Digital Communication in the Modern World Application Layer cont. DNS, SMTP

Slides:



Advertisements
Similar presentations
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Advertisements

 This Class  Chapter 9  Next Class  Wrap up this semester  Demo/discuss programming assignments  Review what we have learned  Questionnaire/Feedback.
1 Electronic Mail u Three major components: u user agents u mail servers u simple mail transfer protocol: SMTP u User Agent u a.k.a. “mail reader” u composing,
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Term B10.
Layer Aplikasi Risanuri Hidayat. Applications and application-layer protocols Application: communicating, distributed processes –e.g., , Web, P2P.
2: Application Layer1 FTP, SMTP and DNS. 2: Application Layer2 FTP: separate control, data connections r FTP client contacts FTP server at port 21, specifying.
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts, routers: –IP address (32 bit) - used for addressing datagrams –“name”, e.g., gaia.cs.umass.edu.
CPSC 441: FTP & SMTP1 Application Layer: FTP & Instructor: Carey Williamson Office: ICT Class.
Chapter 2: Application layer  2.1 Web and HTTP  2.2 FTP 2-1 Lecture 5 Application Layer.
Application Layer session 1 TELE3118: Network Technologies Week 12: DNS Some slides have been taken from: r Computer Networking: A Top Down Approach.
Electronic Mail and SMTP
2: Application Layer1 Chapter 2 outline r 2.1 Principles of app layer protocols m clients and servers m app requirements r 2.2 Web and HTTP r 2.3 FTP r.
2: Application Layer FTP, , and DNS. 2: Application Layer 2 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring.
1 Application layer r Electronic Mail m SMTP, POP3, IMAP r DNS r P2P file sharing.
1 An Overview of Applications Xin Liu ECS 152A Ref: slides by J. Kurose and K. Ross.
CPSC 441: DNS1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes derived.
Esimerkki: Sähköposti. Lappeenranta University of Technology / JP, PH, AH Electronic Mail Three major components: user agents mail servers simple mail.
Simple Mail Transfer Protocol
Introduction 1 Lecture 7 Application Layer (FTP, ) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
Mail Server Fitri Setyorini. Content SMTP POP3 How mail server works IMAP.
Electronic Mail Three major components: SMTP user agents mail servers
Introduction 1-1 Chapter 2 FTP & Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 IC322 Fall.
2: Application Layer1 Chapter 2 Application Layer These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
CS 4396 Computer Networks Lab
Domain Name System (DNS)
SMTP, POP3, IMAP.
1 Application Layer Lecture 5 Imran Ahmed University of Management & Technology.
Trying out HTTP (client side) for yourself
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
Lecture51 Administrative Things r Grader: Yona Raekow Office hours: Wed. 1pm-3pm or Th. 11am-1pm r Homeworks.
CSE401N: Computer Networks Lecture-5 Electronic Mail S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
Review: –How do we address “a network end-point”? –What services are provided by the Internet? –What is the network logical topology observed by a network.
Application Layer Protocols Simple Mail Transfer Protocol.
05 - FTP, , and DNS 2: Application Layer.
DNS,SMTP,MIME.
Fall 2005 By: H. Veisi Computer networks course Olum-fonoon Babol Chapter 7 The Application Layer.
21-1 Last time □ Finish HTTP □ FTP This time □ SMTP ( ) □ DNS.
2: Application Layer1 Reminder r Homework 1 for Wednesday: m Problems #3-5,11,16,18-20 m Half of the problems will be graded r Feel free to send me .
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross.
1 DNS: Domain Name System People: many identifiers: m SSN, name, Passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams.
1 Application Layer Lecture 6 Imran Ahmed University of Management & Technology.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Chapter 2 outline r 2.1 Principles of app layer protocols r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail r 2.5 DNS r 2.6 Socket.
File Transfer Protocol (FTP)
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 8 Omar Meqdadi Department of Computer Science and Software Engineering University of.
CS 3830 Day 9 Introduction 1-1. Announcements r Quiz #2 this Friday r Demo prog1 and prog2 together starting this Wednesday 2: Application Layer 2.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Slides based on Carey Williamson’s: FTP & SMTP1 File Transfer Protocol (FTP) r FTP client contacts FTP server at port 21, specifying TCP as transport protocol.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
World Wide Web r Most Web pages consist of: m base HTML page, and m several referenced objects addressed by a URL r URL has two components: host name and.
COMP 431 Internet Services & Protocols
Important r On Friday, could you ask students to please me their groups (one per group) for Project 2 so we can assign IP addresses. I’ll send.
CSEN 404 Application Layer II Amr El Mougy Lamia Al Badrawy.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Dr. Adil Yousif University of Alneelian – Master of CS - IT Electronic Mail.
Spring 2006 CPE : Application Layer_ 1 Special Topics in Computer Engineering Application layer: Some of these Slides are Based on Slides.
درس مهندسی اینترنت – مهدی عمادی مهندسی اینترنت برنامه‌نویسی در اینترنت 1 SMTP, FTP.
Last time Finish HTTP FTP.
Introduction to Networks
05 - FTP, , and DNS 2: Application Layer.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
Chapter 2: Application layer
Chapter 2: Application layer
CSE 4213: Computer Networks II
DNS: Domain Name System
The Application Layer: SMTP, FTP
FTP, SMTP and DNS 2: Application Layer.
Chapter 2 Application Layer
Presentation transcript:

Computer Communication Digital Communication in the Modern World Application Layer cont. DNS, SMTP Some of the slides have been borrowed from: Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Computer Communication Application Layer2 Electronic Mail Three major components: r user agents (clients) r mail servers r simple mail transfer protocol: SMTP User Agent r a.k.a. “mail reader” r composing, editing, reading mail messages r e.g., Eudora, Outlook, elm, Netscape Messenger, PINE r outgoing, incoming messages stored on server user mailbox outgoing message queue mail server user agent user agent user agent mail server user agent user agent mail server user agent SMTP

Computer Communication Application Layer3 Electronic Mail: mail servers Mail Servers r mailbox contains incoming messages for user r message queue of outgoing (to be sent) mail messages r SMTP protocol between mail servers to send messages m client: sending mail server m “server”: receiving mail server mail server user agent user agent user agent mail server user agent user agent mail server user agent SMTP

Computer Communication Application Layer4 Electronic Mail: SMTP [RFC 2821] r uses TCP to reliably transfer message from client to server, port 25 r direct transfer: sending server to receiving server r three phases of transfer m handshaking (greeting) m transfer of messages m closure r command/response interaction m commands: ASCII text m response: status code and phrase r messages must be in 7-bit ASCII

Computer Communication Application Layer5 Scenario: Alice sends message to Bob 1) Alice uses UA to compose message and “to” 2) Alice’s UA sends message to her mail server; message placed in message queue 3) Client side of SMTP opens TCP connection with Bob’s mail server 4) SMTP client sends Alice’s message over the TCP connection 5) Bob’s mail server places the message in Bob’s mailbox 6) Bob invokes his user agent to read message user agent mail server mail server user agent

Computer Communication Application Layer6 Sample SMTP interaction S: 220 mail.cs.huji.ac.il C: HELO mail.cs.huji.ac.il S: 250 Hello mail.cs.ac.il, pleased to meet you C: MAIL FROM: S: 250 Sender ok C: RCPT TO: S: 250 Recipient ok C: DATA S: 354 Enter mail, end with "." on a line by itself C: Do you want with hilbe? C: How about amba? C:. S: 250 Message accepted for delivery C: QUIT S: 221 mail.cs.huji.ac.il closing connection

Computer Communication Application Layer7 Try SMTP interaction for yourself:  telnet servername 25 r see 220 reply from server r enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands above lets you send without using client (reader)

Computer Communication Application Layer8 SMTP: final words r SMTP uses persistent connections r SMTP requires message (header & body) to be in 7- bit ASCII  SMTP server uses CRLF.CRLF to determine end of message Comparison with HTTP: r HTTP: pull r SMTP: push r both have ASCII command/response interaction, status codes r HTTP: each object encapsulated in its own response msg r SMTP: multiple objects sent in multipart msg

Computer Communication Application Layer9 Mail message format SMTP: protocol for exchanging msgs RFC 822: standard for text message format: r header lines, e.g., m To: m From: m Subject: different from SMTP commands! r body m the “message”, ASCII characters only header body blank line

Computer Communication Application Layer10 Message format: multimedia extensions r MIME: multimedia mail extension, RFC 2045, 2056 r additional lines in msg header declare MIME content type From: To: Subject: Picture of yummy crepe. MIME-Version: 1.0 Content-Transfer-Encoding: base64 Content-Type: image/jpeg base64 encoded data base64 encoded data multimedia data type, subtype, parameter declaration method used to encode data MIME version encoded data

Computer Communication Application Layer11 MIME types Content-Type: type/subtype; parameters Text  example subtypes: plain, html Image  example subtypes: jpeg, gif Audio  exampe subtypes: basic (8-bit mu-law encoded), 32kadpcm (32 kbps coding) Video  example subtypes: mpeg, quicktime Application r other data that must be processed by reader before “viewable”  example subtypes: msword, octet-stream

Computer Communication Application Layer12 Multipart Type From: To: Subject: Picture of yummy crepe. MIME-Version: 1.0 Content-Type: multipart/mixed; boundary=StartOfNextPart --StartOfNextPart Dear Bob, Please find a picture of a crepe. --StartOfNextPart Content-Transfer-Encoding: base64 Content-Type: image/jpeg base64 encoded data base64 encoded data --StartOfNextPart Do you want the recipe?

Computer Communication Application Layer13 Mail access protocols r SMTP: delivery/storage to receiver’s server r Mail access protocol: retrieval from server m POP: Post Office Protocol [RFC 1939] authorization (agent server) and download m IMAP: Internet Mail Access Protocol [RFC 1730] more features (more complex) manipulation of stored msgs on server m HTTP: Hotmail, Yahoo! Mail, Gmail, etc. user agent sender’s mail server user agent SMTP access protocol receiver’s mail server

Computer Communication Application Layer14 POP3 protocol authorization phase r client commands:  user: declare username  pass: password r server responses m +OK  -ERR transaction phase, client:  list: list message numbers  retr: retrieve message by number  dele: delete r quit C: list S: S: S:. C: retr 1 S: S:. C: dele 1 C: retr 2 S: S:. C: dele 2 C: quit S: +OK POP3 server signing off S: +OK POP3 server ready C: user bob S: +OK C: pass hungry S: +OK user successfully logged on

Computer Communication Application Layer15 POP3 (more) and IMAP More about POP3 r Previous example uses “download and delete” mode. r Bob cannot re-read e- mail if he changes client r “Download-and-keep”: copies of messages on different clients r POP3 is stateless across sessions IMAP r Keep all messages in one place: the server r Allows user to organize messages in folders r IMAP keeps user state across sessions: m names of folders and mappings between message IDs and folder name

Computer Communication Application Layer16 DNS: Domain Name System People: many identifiers: m SSN, name, passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams m “name”, e.g., gaia.cs.umass.edu - used by humans Q: map between IP addresses and name ? Domain Name System: r distributed database implemented in hierarchy of many name servers r application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation) m note: core Internet function, implemented as application-layer protocol m complexity at network’s “edge”

Computer Communication Application Layer17 DNS name servers r no server has all name- to-IP address mappings local name servers: m each ISP, company has local (default) name server m host DNS query first goes to local name server authoritative name server: m for a host: stores that host’s IP address, name m can perform name/address translation for that host’s name Why not centralize DNS? r single point of failure r traffic volume r distant centralized database r maintenance doesn’t scale!

Computer Communication Application Layer18 DNS: Root name servers r contacted by local name server that can not resolve name r root name server: m contacts authoritative name server if name mapping not known m gets mapping m returns mapping to local name server b USC-ISI Marina del Rey, CA l ICANN Marina del Rey, CA e NASA Mt View, CA f Internet Software C. Palo Alto, CA i NORDUnet Stockholm k RIPE London m WIDE Tokyo a NSI Herndon, VA c PSInet Herndon, VA d U Maryland College Park, MD g DISA Vienna, VA h ARL Aberdeen, MD j NSI (TBD) Herndon, VA 13 root name servers worldwide

Computer Communication Application Layer19 Simple DNS example host surf.eurecom.fr wants IP address of gaia.cs.umass.edu 1. contacts its local DNS server, dns.eurecom.fr 2. dns.eurecom.fr contacts root name server, if necessary 3. root name server contacts authoritative name server, dns.umass.edu, if necessary requesting host surf.eurecom.fr gaia.cs.umass.edu root name server authorititive name server dns.umass.edu local name server dns.eurecom.fr

Computer Communication Application Layer20 DNS example Root name server: r may not know authoritative name server r may know intermediate name server: who to contact to find authoritative name server requesting host surf.eurecom.fr gaia.cs.umass.edu root name server local name server dns.eurecom.fr authoritative name server dns.cs.umass.edu intermediate name server dns.umass.edu 7 8

Computer Communication Application Layer21 DNS: iterated queries recursive query: r puts burden of name resolution on contacted name server r heavy load? iterated query: r contacted server replies with name of server to contact r “I don’t know this name, but ask this server” requesting host surf.eurecom.fr gaia.cs.umass.edu root name server local name server dns.eurecom.fr authoritative name server dns.cs.umass.edu intermediate name server dns.umass.edu 7 8 iterated query

Computer Communication Application Layer22 DNS: caching and updating records r once (any) name server learns mapping, it caches mapping m cache entries timeout (disappear) after some time r update/notify mechanisms under design by IETF m RFC 2136 m

Computer Communication Application Layer23 DNS records DNS: distributed db storing resource records (RR) r Type=NS  name is domain (e.g. foo.com)  value is IP address of authoritative name server for this domain RR format: (name, value, type,ttl) r Type=A  name is hostname  value is IP address r Type=CNAME  name is alias name for some “cannonical” (the real) name is really servereast.backup2.ibm.com  value is cannonical name r Type=MX  value is name of mailserver associated with name

Computer Communication Application Layer24 DNS protocol, messages DNS protocol : query and reply messages, both with same message format msg header r identification: 16 bit # for query, reply to query uses same # r flags: m query or reply m recursion desired m recursion available m reply is authoritative

Computer Communication Application Layer25 DNS protocol, messages Name, type fields for a query RRs in reponse to query records for authoritative servers additional “helpful” info that may be used

Computer Communication Application Layer26 Web caches (proxy server) r user sets browser: Web accesses via cache r browser sends all HTTP requests to cache m object in cache: cache returns object m else cache requests object from origin server, then returns object to client Goal: satisfy client request without involving origin server client Proxy server client HTTP request HTTP response HTTP request HTTP response origin server origin server

Computer Communication Application Layer27 More about Web caching r Cache acts as both client and server  Cache can do up-to-date check using If-modified- since HTTP header m Issue: should cache take risk and deliver cached object without checking? m Heuristics are used. r Typically cache is installed by ISP (university, company, residential ISP) Why Web caching? r Reduce response time for client request. r Reduce traffic on an institution’s access link. r Internet dense with caches enables “poor” content providers to effectively deliver content

Computer Communication Application Layer28 Caching example (1) Assumptions r average object size = 100,000 bits r avg. request rate from institution’s browser to origin serves = 15/sec r delay from institutional router to any origin server and back to router = 2 sec Consequences r utilization on LAN = 15% r utilization on access link = 100% r total delay = Internet delay + access delay + LAN delay = 2 sec + minutes + milliseconds origin servers public Internet institutional network 10 Mbps LAN 1.5 Mbps access link institutional cache

Computer Communication Application Layer29 Caching example (2) Possible solution r increase bandwidth of access link to, say, 10 Mbps Consequences r utilization on LAN = 15% r utilization on access link = 15% r Total delay = Internet delay + access delay + LAN delay = 2 sec + msecs + msecs r often a costly upgrade origin servers public Internet institutional network 10 Mbps LAN 10 Mbps access link institutional cache

Computer Communication Application Layer30 Caching example (3) Install cache r suppose hit rate is.4 Consequence r 40% requests will be satisfied almost immediately r 60% requests satisfied by origin server r utilization of access link reduced to 60%, resulting in negligible delays (say 10 msec) r total delay = Internet delay + access delay + LAN delay =.6*2 sec +.6*.01 secs + milliseconds < 1.3 secs origin servers public Internet institutional network 10 Mbps LAN 1.5 Mbps access link institutional cache

Computer Communication Application Layer31 Content distribution networks (CDNs) r The content providers are the CDN customers. Content replication r CDN company installs hundreds of CDN servers throughout Internet m in lower-tier ISPs, close to users r CDN replicates its customers’ content in CDN servers. When provider updates content, CDN updates servers origin server in North America CDN distribution node CDN server in S. America CDN server in Europe CDN server in Asia

Computer Communication Application Layer32 CDN example origin server r r distributes HTML r Replaces: with h ttp:// HTTP request for DNS query for HTTP request for Origin server CDNs authoritative DNS server Nearby CDN server CDN company r cdn.com r distributes gif files r uses its authoritative DNS server to route redirect requests

Computer Communication Application Layer33 More about CDNs routing requests r CDN creates a “map”, indicating distances from leaf ISPs and CDN nodes r when query arrives at authoritative DNS server: m server determines ISP from which query originates m uses “map” to determine best CDN server not just Web pages r streaming stored audio/video r streaming real-time audio/video m CDN nodes create application-layer overlay network