The optical readout chain for the ALICE Transition Radiation Detector Presentation at IRTG Seminar Felix Rettig 29. Juni 2007.

Slides:



Advertisements
Similar presentations
Alice EMCAL meeting, July EMCAL jet trigger status Olivier BOURRION LPSC, Grenoble.
Advertisements

Sumitha Ajith Saicharan Bandarupalli Mahesh Borgaonkar.
PXL RDO System Requirements And meeting goals 11/12/2009BNL_CD-1_SENSOR_RDO - LG1.
Ultrafast 16-channel ADC for NICA-MPD Forward Detectors A.V. Shchipunov Join Institute for Nuclear Research Dubna, Russia
TileCal Electronics A Status Report J. Pilcher 17-Sept-1998.
8th Workshop on Electronics for LHC Experiment, Colmar, France, 10 Sep R.Ichimiya, ATLAS Japan 1 Sector Logic Implementation for the ATLAS Endcap.
Torsten Alt - KIP Heidelberg IRTG 28/02/ ALICE High Level Trigger The ALICE High-Level-Trigger.
> IRTG – Heidelberg 2007 < Jochen Thäder – University of Heidelberg 1/18 ALICE HLT in the TPC Commissioning IRTG Seminar Heidelberg – January 2008 Jochen.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
Jorge Mercado - I3HP Topical Workshop - St. Andrews The ALICE Transition Radiation Detector (TRD) Read-Out Electronics J. Mercado Physikalisches.
Sept TPC readoutupgade meeting, Budapest1 DAQ for new TPC readout Ervin Dénes, Zoltán Fodor KFKI, Research Institute for Particle and Nuclear Physics.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
Kaori Maeshima (FNAL), Muon Alignment EDR: FEB. 28, Endcap Alignment EMU Alignment DAQ Muon Alignment EDR Feb. 28, 2002 Outline: 1.Components to.
LAV firmware status Francesco Gonnella Mauro Raggi 23 rd May 2012 TDAQ Working Group Meeting.
MSS, ALICE week, 21/9/041 A part of ALICE-DAQ for the Forward Detectors University of Athens Physics Department Annie BELOGIANNI, Paraskevi GANOTI, Filimon.
DDL hardware, DATE training1 Detector Data Link (DDL) DDL hardware Csaba SOOS.
The GANDALF Multi-Channel Time-to-Digital Converter (TDC)  GANDALF module  TDC concepts  TDC implementation in the FPGA  measurements.
Uni-Heidelberg, KIP, V.Angelov 1 International Workshop TRDs – Present & Future September, Romania Wafer Tester, Optical Link, GTU V. Angelov Kirchhoff.
SODA: Synchronization Of Data Acquisition I.Konorov  Requirements  Architecture  System components  Performance  Conclusions and outlook PANDA FE-DAQ.
Development and Performance of the High Voltage Distribution System for the ALICE TRD A. Markouizos, P. Mantzaridis, P. Mitseas, A. Petridis, S. Potirakis,
Leo Greiner IPHC meeting HFT PIXEL DAQ Prototype Testing.
PHENIX upgrade DAQ Status/ HBD FEM experience (so far) The thoughts on the PHENIX DAQ upgrade –Slow download HBD test experience so far –GTM –FEM readout.
Status of the CSC Track-Finder Darin Acosta University of Florida.
C.Schrader; Oct 2008, CBM Collaboration Meeting, Dubna, Russia R/O concept of the MVD demonstrator C.Schrader, S. Amar-Youcef, A. Büdenbender, M. Deveaux,
LNL 1 SLOW CONTROLS FOR CMS DRIFT TUBE CHAMBERS M. Bellato, L. Castellani INFN Sezione di Padova.
Leo Greiner IPHC DAQ Readout for the PIXEL detector for the Heavy Flavor Tracker upgrade at STAR.
Status of Global Trigger Global Muon Trigger Sept 2001 Vienna CMS-group presented by A.Taurok.
CPT Week, April 2001Darin Acosta1 Status of the Next Generation CSC Track-Finder D.Acosta University of Florida.
Frank Lemke DPG Frühjahrstagung 2010 Time synchronization and measurements of a hierarchical DAQ network DPG Conference Bonn 2010 Session: HK 70.3 University.
Bernardo Mota (CERN PH/ED) 17/05/04ALICE TPC Meeting Progress on the RCU Prototyping Bernardo Mota CERN PH/ED Overview Architecture Trigger and Clock Distribution.
The ALICE Forward Multiplicity Detector Kristján Gulbrandsen Niels Bohr Institute for the ALICE Collaboration.
Rome 4 Sep 04. Status of the Readout Electronics for the HMPID ALICE Jose C. DA SILVA ALICE.
Leo Greiner PIXEL Hardware meeting HFT PIXEL detector LVDS Data Path Testing.
28/03/2003Julie PRAST, LAPP CNRS, FRANCE 1 The ATLAS Liquid Argon Calorimeters ReadOut Drivers A 600 MHz TMS320C6414 DSPs based design.
Xiangming Sun1PXL Sensor and RDO review – 06/23/2010 STAR XIANGMING SUN LAWRENCE BERKELEY NATIONAL LAB Firmware and Software Architecture for PIXEL L.
Intel: Lan Access Division Technion: High Speed Digital Systems Lab By: Leonid Yuhananov & Asaad Malshy Supervised by: Dr. David Bar-On.
March 9, 2005 HBD CDR Review 1 HBD Electronics Preamp/cable driver on the detector. –Specification –Schematics –Test result Rest of the electronics chain.
LHCb front-end electronics and its interface to the DAQ.
01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
Status of TRD Pre-trigger System K. Oyama, T. Krawutschke, A. Rausch, J. Stachel, P. von Walter, R. Schicker and M. Stockmeier for the T0, V0, and TRD.
KLM Trigger Status Barrel KLM RPC Front-End Brandon Kunkler, Gerard Visser Belle II Trigger and Data Acquistion Workshop January 17, 2012.
Towards a 7-module Micromegas Large TPC prototype 1 D. Attié, P. Baron, D. Calvet, P. Colas, C. Coquelet, E. Delagnes, M. Dixit, A. Le Coguie, R. Joannes,
STAR Pixel Detector readout prototyping status. LBNL-IPHC-06/ LG22 Talk Outline Quick review of requirements and system design Status at last meeting.
ARCHITECTURE. PRR November x 32 PADs Up to 26 or 3 x 17 MANU BOARD. PATCH BUS Translator Board. FEE DETECTOR Up to 100 PATCH BUS per detector. MANU.
TPC electronics Status, Plans, Needs Marcus Larwill April
BPM stripline acquisition in CLEX Sébastien Vilalte.
Optical Readout Interface (ORI)
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
Readout controller Block Diagram S. Hansen - CD-1 Lehman Review1 VXO Ø Det Links to 24 SiPM Front End Boards Clock Event Data USB ARM uC A D Rd Wrt 100Mbit.
August 24, 2011IDAP Kick-off meeting - TileCal ATLAS TileCal Upgrade LHC and ATLAS current status LHC designed for cm -2 s 7+7 TeV Limited to.
Vladimir Zhulanov for BelleII ECL group Budker INP, Novosibirsk INSTR2014, Novosibirsk 2014/02/28 1.
Sergio Vergara Limon, Guy Fest, September Electronics for High Energy Physics Experiments.
Status and Plans for Xilinx Development
10/3/2003Andreas Jansson - Tevatron IPM review1 Tevatron IPM Proposed design.
29/05/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
The ALICE Data-Acquisition Read-out Receiver Card C. Soós et al. (for the ALICE collaboration) LECC September 2004, Boston.
Some thoughs about trigger/DAQ … Dominique Breton (C.Beigbeder, G.Dubois-Felsmann, S.Luitz) SuperB meeting – La Biodola – June 2008.
Use of FPGA for dataflow Filippo Costa ALICE O2 CERN
Modeling event building architecture for the triggerless data acquisition system for PANDA experiment at the HESR facility at FAIR/GSI Krzysztof Korcyl.
Data Handling Processor v0.1 First Test Results
ProtoDUNE SP DAQ assumptions, interfaces & constraints
VELO readout On detector electronics Off detector electronics to DAQ
The digital read-out for the CSC system of the TOTEM experiment at LHC
John Harvey CERN EP/LBC July 24, 2001
Commissioning of the ALICE-PHOS trigger
The digital read-out for the CSC system of the TOTEM experiment at LHC
Local Level 1 trigger Hardware and data flow
The LHCb Front-end Electronics System Status and Future Development
Multi Chip Module (MCM) The ALICE Silicon Pixel Detector (SPD)
Data Concentrator Card and Test System for the CMS ECAL Readout
Presentation transcript:

The optical readout chain for the ALICE Transition Radiation Detector Presentation at IRTG Seminar Felix Rettig 29. Juni 2007

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 2 About me 1996Abitur in Heppenheim 1997Undergraduate Studies in Physics at University of Surrey, Guildford, UK Physics Studies at Uni Heidelberg 2002-Employment at Curagita AG Physics Diploma in Heidelberg PhD Student in Heidelberg

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 3 Outline The ALICE Experiment The Transition Radiation Detector (TRD) Optical Readout Interface Board (ORI) –features, high-speed laser modulation –error rates, irradiation test results Readout datapath components –Global Tracking Unit (GTU) and its sub-components –low-latency transmission for triggering –high-bandwidth buffering of raw data –multi-event data buffering Current Status of GTU development and assembly Outlook

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 4 ALICE Experiment Pb-Pb collisions at up to 1150 TeV 8000 collisions per second Goal: Quark-Gluon- Plasma Various detectors: TPC, TRD,... A Large Ion Collission Experiment (ALICE)

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 5 Transition Radiation Detector 1.2 million channels MCMs

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 6 Transition Radiation Detector 1.2 million channels MCMs Radiator Drift Chamber Drift Ampl. z y Cathode Pads Cathode Wires Anode Wires

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 7 TRD Front-End Electronics (FEE) Multi-Chip Module (MCM) –10-bit ADC for each of the 18 channels –up to 32 time bins, 10 MHz sampling rate ADC raw data reduction to stiff "tracklets" characterized by y-, z-position and deflection (compound 32-bit value) Filter Preprocessor Processor PASA... 18x... Analog signals from 18 cathode pads Readout Tree ADC Network Interface Data Buffers Tracklet Processor (TRAP) Multi-Chip Module (MCM) deflection time bins y Local Tracking

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 8 TRD FEE Readout Tree Readout Boards (ROB) –16 MCMs (288 channels) in 4-level readout tree Module: 2 Half-Chambers –3 / 4 Readout Boards, Half-Chamber Merger (HC-MCM) –Optical Readout Interface Board (ORI) for laser trans- mission of tracklets and raw data to GTU MCM Board Merger Readout Board z y Board Merger CCCC CCCC CCCC CC C C HC Merger ORI-Board z y 2x per Module Half Chamber Merger 4 Pad Rows 18 x 4 = 72 Channels12 or 16 Pad Rows 2 x 72 Channels Laser to GTU located outside of L3 magnet

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 9 TRD FEE Readout Tree Readout Board (ROB): –16 MCMs in readout tree –4 column mergers –1 board merger Module: –2x 4 (3) Readout Boards –2 Half-Chamber Mergers –2 Optical Readout Inter- face Boards (ORI) half chamber data concen- trated by HC Merger optical transmission from ORI to Global Tracking Unit outside of L3 magnet Board Merger CCC C CCCC CCCC CCCC HC Merger ORI-Board z y 2x per Module 12 or 16 Pad Rows 2 x 72 Channels Optical laser link to GTU located outside of L3 magnet The full TRD comprises MCMs on 4104 ROBs 540 modules in 90 stacks 1080 optical readout links

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 10 Optical Readout Interface Board HC-MCM LVDS CPLD 8B/10B Serial. Laser Driver PROM Key features: conversion 120 MHz 8-bit DDR to 125 MHz 16-bit SDR 8B/10B encoding and serialization to 2.5 Gbit/s high-speed modulation of laser driving signals 850nm Laser Diode (VCSEL) with Monitoring Diode ROB 120 MHz125 MHz2.5 GHz I²C bus Laser Diode

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 11 Optical Readout Interface Board CPLD LVDS Transceivers Laser Driver Laser Diode Connectors to Readout Board 8B/10B Encoder Serializer

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 12 Laser Diode Vertical Cavity Surface Emitting Laser Diode (VCSEL) built-in monitoring diode for power regulation feedback C I forward

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 13 Laser Modulation - Shunt Switching diff. data signal DAC + - S Temp Comp Temp Sensor ADC DAC S LOG AMP CURRENT ATTENUATOR C Temp Comp Laser Driver APC Mode ADC Servo Controller Modulation CurrentI M tc1/ 2 Servo Controller Source Current I M Gain T Nom I M Nom Peaking I M TC 1,2 I MD TC 1,2 APC Gain I M Rng I MD Nom I M Rng I MD RTRT ISIS IMIM I LD Laser Diode Monitor Diode

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 14 Laser Modulation - Eye Diagrams eye closed big parameter space: 15 setup parameters in combination with various properties of board components determine low- and high-speed characteristics of laser driving signals hard to find a common setup to be used for all 1080 boards very fast signals to be optimized, intricate to measure 8 mA Laser Forward Current 250 ps clear eye openingeye closed

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 15 Laser Modulation - Eye Diagrams eye closed huge parameter space: 15 setup parameters in combination with various properties of board components determine low- and high-speed characteristics of laser driving signals hard to find a common setup to be used for all 1080 boards signals to optimize are very fast, intricate to measure 8 mA Laser Forward Current 250 ps clear eye openingeye closed 6 mA final setup with "peaking" 125 ps

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 16 ORIs in first Supermodule at CERN Number of Optical Links Optical Power [µW] First Supermodule installed at CERN high reliability of data transmission achieved: broad safety margin ensures sufficient opti- cal power in case of laser degeneration laser diodes operating in lower region of forward current and optical power output minimum power for BER < Bit Error Rates <

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 17 ORI Irradiation Tests Irradiation tests carried out at OCL 27.7 MeV proton beam All components meet safety margin of factor 4 life-time Assumptions about TRD radiation environment: D IP ~ 1.6 Gy, D tot ~ 1.8 Gy in 10 years of operation

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 18 Full TRD Readout Chain Global Tracking Unit (GTU) Track Matching Unit (TMU) Supermodule Unit (SMU), Trigger Generation Unit (TGU) ORI Module 6x Stack Trigger Design Event Buffering Design Tracklets only Tracklets & Raw Data RX TMU 5x SMU Trigger Handling & Control GTU Supermodule Segment Front-End Electronics within L3 magnet Half Chamber DCS Board TTCrx DDL SIU DATE Software DIU D-RORC Mass Storage DAQ System Central Trigger Processor TGU 1 8 x 5x Track Concentr. GTU Racks 12 fibres Racks below Muon System Storage

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 19 ALICE Trigger Timing Time after Collision CollisionLevel-0 Trigger Level-2 Trigger Window µs µs Tracklets 6.2 µs Raw Data Data Forward to DAQ Accept/Reject Level-1 Trigger

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 20 GTU Requirements 1080 optical links deliver both –tracklets:low-latency required, small volume, high rate –raw data:big volume, latency subordinate, lower rate huge bandwidth –each opical link: 1.94 Gbit/s –links into one TMU: 23.3 Gbit/s –full detector: 2.1 Tbit/s = 244 GByte/s fast track reconstruction and decision taking for TRD's level-1 trigger contribution uni-directional optical links, no flow control –buffering of incoming raw data with full bandwidth forward buffered event data to DAQ system or discard support for trigger interlacing, buffering of multiple events

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 21 TMU Requirements low-latency deserialization and 8B/10B decoding of optical data received from front-end electronics 12 independent 16-bit data streams at 125 MHz clocks single 4-Mbit SRAM with 128-bit interface at 200 MHz multi-event buffering of up to five events, appropriate data forwarding or discarding on L2 messages error detection / handling for each separate link aborting of incomplete events, discarding associated data delicate balance between speed and ressource utilization to accomodate trigger and buffer designs in one FPGA → complex FPGA design, many clock domains, highly pipelined data path design needed to allow for operation at 200 MHz

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 22 Receiving of Optical Data optical-electrical converter modules Virtex-4 FX100 FPGA 16 Multi-Gigabit Transceivers –highly configurable, ~100 parameters –clock reconstruction –deserializing –comma detection, comma aligning –8B/10B decoding –rate matching incoming 16-bit data streams synchronized to one 125 MHz clock

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 23 Event Buffering Design 16/128 Event Shaper SRAM Controller writeread 16/128 Read Address Logic & Control Data Formatting TMU/SMU Interface Readout Unit 4-Mbit SRAM SMU Control (L0-/L1-Trigger) Scheduling Memory Management Event (n, 0) Event (n+1, 0) Event (n, 11) Event (n+1, 11) Event Info FIFO Buffer Supermodule Unit Links from one Stack... 12x... SMU Control (L2-Message) Data Block, Link 0Data Block, Link x... empty address data status Data stream Merging

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 24 Data Stream Merging collation of 16-bit values to 128-bit lines for each link padding at the end of datastreams 12 data path clock domain crossings 12 independent 16-bit data streams at 125 MHz with gaps single SRAM with 128-bit wide interface at 200 MHz 128-bit Line

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 25 Data Collation = FIFO ring counter BRAM Link Data Data Valid End Marker Line Data Last Line Line Advance Line Valid read address write address write enable Block-RAM primitives –16-bit / 32-bit collation –safe datapath clock domain crossing –buffering of filled 128-bit lines until scheduled forward to SRAM write commas discarded, only valid data words are collated write enable logic performs padding without need for extra endmarker write cycles end of data flag stored explicitly, no 32-bit compares necessary in later stages 125 MHz clock domain 200 MHz clock domain Aligning Buffer

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 26 Buffer Organization SRAM divided into separate parts, one for each link blocks independently organized as ring buffers data of multiple events dynamically double write pointers allow discarding of incomplete events, directly freeing occupied memory locations overrun protection, anticipatory busy signaling 4-Mbit SRAM Event (n, 0) Event (n+1, 0) Event (n, 11) Event (n+1, 11) Data Block, Link x... empty memory Data Block, Link 0 rp end (n) end (n+1) rp end (n) end (n+1)

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 27 Buffer Address Management Event n -2 Event n-1 Event n (incomplete) + + Write Pointer A 1 Block RAM Bank B Bank A write address read address 1 0 R 18 SRAM write address offset Data Block, Link 0 Read Pointer AB Write pointers Write Pointer A 0 Write Pointer B 1 Write Pointer B x... base address event end pointer 0 2 write pointers –first word offset –current offset normal operation: –first constant –increment current event complete: –pointers swap meaning discard incomplete event: –use first word pointer, copy to current pointer only one RAM block needed for all pointers, no 12:1 multiplexers

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 28 Event Buffering Design - Detailed

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 29 Event Buffering Design - Detailed

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 30 Event Buffering Design - Detailed

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 31 Event Buffering Design - Detailed

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 32 TMU FPGA Design Current TMU design: –ressources produce new pictures!

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 33 CERN Tests

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 34 Tests and Integration Progress GTU segment running in Münster for super-module assembly and testing all segments being assembled and tested currently transfer to CERN and installation scheduled for end of july some CTP signal handling and DDL/DAQ issues open trigger design not yet integrated

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 35 Prospective Work Finish development of GTU –a lot of open detail issues –multi-event buffering under full CTP control Installation at CERN Beam and performance tests, refinements Monitoring system, GTU event display Physics applications of GTU –various trigger schemes based on comprehensive track and p t information, e.g. Jet Triggers

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 36 Thank You for Your Attention Questions?

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 37 TMU Board - Final Layout

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 38 SMU Board - Final Layout

Felix Rettig – KIP – ALICE TRD Global Tracking Unit – IRTG Seminar p. 39 TMU-SMU-Hybrid