P. 192. Fig. 6-1, p. 193 Fig. 6-2, p. 193 Fig. 6-3, p. 195.
Advertisements
Fig. 4-1, p Fig. 4-2, p. 109 Fig. 4-3, p. 110.
Advertisements
Slide 1Fig. 2.1a, p.25. Slide 2Fig. 2.1b, p.25 Slide 3Table 2.1, p.25.
Slide 1Fig. 15.1, p.453. Slide 2Fig. 15.1a, p.453.
Slide 1Fig. 22.1, p.669. Slide 2Fig. 22.3, p.670.
Slide 1Fig. 17.1, p.513. Slide 2Table 17.1, p.514.
Slide 1Fig. 9.1, p.253. Slide 2Fig. 9.2, p.255 Slide 3Fig. 9.3, p.256.
Slide 1Fig. 11.1, p.337. Slide 2Fig. 11.2, p.338.
Slide 1Fig. 19.1, p Slide 2Fig. 19.2, p. 583.
Slide 1Fig. 16.1, p.488. Slide 2Fig. 16.2, p.488.
Section 5.2 Use Perpendicular Bisectors. Vocabulary Perpendicular Bisector: A segment, ray, line, or plane that is perpendicular to a segment at its midpoint.
Slide 1Fig. 21.1, p.641. Slide 2Fig. 21.2, p.642.
Slide 1Fig. 10.1, p.293. Slide 2Fig. 10.1a, p.293.
Slide 1Fig. 5.1, p.113. Slide 2Fig. 5.1a, p.113 Slide 3Fig. 5.1b, p.113.
P.464. Table 13-1, p.465 Fig. 13-1, p.466 Fig. 13-2, p.467.
P449. p450 Figure 15-1 p451 Figure 15-2 p453 Figure 15-2a p453.
Fig , p.273. Source:
Fig. 11-1, p p. 360 Fig. 11-2, p. 361 Fig. 11-3, p. 361.
1 Chapter 12 Probabilistic Reasoning and Bayesian Belief Networks.
Table 6-1, p Fig. 6-1, p. 162 p. 163 Fig. 6-2, p. 164.
Chapter 6 Differential Analysis of Fluid Flow. 06_01.
1. 2 Weighted interval scheduling for a lazy man Input: the same as weighted interval scheduling. Goal: find a set of compatible jobs such that for any.
Fig. 3-1, p. 67. Fig. 3-2, p. 67 Fig. 3-3, p. 68.
Figure 1.1 The observer in the truck sees the ball move in a vertical path when thrown upward. (b) The Earth observer views the path of the ball as a parabola.
Slide 1Fig. 3.1, p.59. Slide 2Fig. 3.2, p.59 Slide 3Fig. 3.2a, p.59.
Slide 1Fig. 4.1, p.78. Slide 2Fig. 4.3, p.78 Slide 3Fig. 4.4, p.80.
1 times table 2 times table 3 times table 4 times table 5 times table
Probability Rules l Rule 1. The probability of any event (A) is a number between zero and one. 0 < P(A) < 1.
AP STATISTICS. Theoretical: true mathematical probability Empirical: the relative frequency with which an event occurs in a given experiment Subjective:
Perpendicular and Angle Bisectors of a Triangle Sec 5.2 Goal: To use properties of perpendicular bisectors of a triangle. To use properties of angle bisectors.
6.3 Conditional Probability. Calculate Conditional Probabilities Determine if events are independent.
Slide 1Fig 28-CO, p.858. Slide 2Fig 28-1, p.859 Slide 3Fig Q28-19, p.884.
Suppose we choose the ordering M, J, A, B, E P(J | M) = P(J)? Example.
A Different Type of Monte Carlo Simulation Jake Blanchard Spring 2010 Uncertainty Analysis for Engineers1.
Statistics General Probability Rules. Union The union of any collection of events is the event that at least one of the collection occurs The union of.
Special Segments of Triangles
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
Section 5.2 Use Perpendicular Bisectors. Vocabulary Perpendicular Bisector: A segment, ray, line, or plane that is perpendicular to a segment at its midpoint.
Using Tables in Probability Problems -how to make problems easier.
Tables Learning Support
On Desk: 1. Pencil 2. Math Journal 3. WDYE Learning Log 4. Parent Signatures? Learning Log: 1. HW: p.58 #1-labsheet, #2-3, #15-20, Math CC7/8 – Be.
Computer Science 320 Cache Interference. Unexpected Performance The testing of the partial key search SMP program produced anomalous results In particular,
Section 3.3 Addition Rule (Venn Diagram). Section 3.3 Objectives Determine if two events are mutually exclusive Use a Venn Diagram to find the probability.
SPECIAL SEGMENTS OF TRIANGLES SECTIONS 5.2, 5.3, 5.4.
Bisectors in Triangles Concurrency of Perpendicular Bisector Theorem If the perpendicular bisectors PX, PY and PZ are concurrent at P, then PA = PC = PB.
Unit 32 Graphic Design for Media Products P1 Understand a range of promotional graphic design products name.
All about Factors K. Ganesan Grade Level: 5-8. Introduction What is a factor? F is factor of N if N / F has remainder 0. Example: The factors of 18 are.
5.2 B ISECTORS OF A T RIANGLE We have learned about the perpendicular bisector of a segment and the bisector of an angle. Now we will learn about the special.
Fig. 6-CO, p p. 185a p. 185b p. 185c p. 185d.
Section 5.2: Bisectors of a Triangle. Perpendicular bisector of a triangle – A line, ray, or segment that is perpendicular to a side of the triangle at.
Multiplication table. x
10.8 The Power Theorems After studying this section, you will be able to apply the power theorems.
Times Tables.
PB 26 GRAPHICS.
Copyright © Cengage Learning. All rights reserved.
Mutually exclusive nothing in common.
How tall is the table?.
Data Mining, Second Edition, Copyright © 2006 Elsevier Inc.
Additive Rule Review Experiment: Draw 1 Card. Note Kind, Color & Suit.
2 or more does NOT affects.
Fig. 6-CO, p. 211.
07CO, p. 190.
Unit 8. Day 1..
02CO, p. 24.
Probability Rules Rule 1.
3 times tables.
6 times tables.
Note 10:Conditional Probability
财务管理案例教学法 研究及示例 ——王遐昌 2006/11/10.
© Be selective and prioretize in order to be on time!
LESSON 7–5 Parametric Equations.
p. 192
Fig. 6-1, p. 193
Fig. 6-2, p. 193
Fig. 6-3, p. 195
Fig. 6-3a, p. 195
Fig. 6-3b, p. 195
Fig. 6-3c, p. 195
Fig. 6-4, p. 196
Fig. 6-4a, p. 196
Fig. 6-4b, p. 196
p. 198
Fig. 6-5, p. 201
Fig. 6-6, p. 201
Fig. 6-6a, p. 201
Fig. 6-6b, p. 201
Fig. 6-6c, p. 201
Fig. 6-7, p. 202
Fig. 6-8, p. 203
Fig. 6-9a, p. 204
Fig. 6-9b, p. 204
Fig. 6-10, p. 206
Fig. 6-11, p. 206
Fig. 6-12, p. 207
Fig. 6-12a, p. 207
Fig. 6-12b, p. 207
Fig. 6-12c, p. 207
Fig. 6-12d, p. 207
Fig. 6-12e, p. 207
Fig. 6-12f, p. 207
Fig. 6-13, p. 208
* Fig. 6-14a, p. 208
Fig. 6-14b, p. 208
Fig. 6-15, p. 209
Fig. 6-16, p. 210
Fig. 6-17, p. 212
Fig. 6-18, p. 214
Fig. 6-18a, p. 214
Fig. 6-18b, p. 214
Fig. 6-19, p. 215
Fig. 6-20, p. 216
Table 6-1, p. 217
Table 6-2, p. 222
Fig. P6-1, p. 227
Fig. P6-1a, p. 227
Fig. P6-1b, p. 227
Fig. P6-1c, p. 227
Fig. P6-1d, p. 227
Fig. P6-1e, p. 227
Fig. P6-15, p. 228
Fig. P6-23, p. 229
Fig. P6-36, p. 230