S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems 0909.331.01 Spring 2005 Shreekanth Mandayam ECE Department Rowan University.

Slides:



Advertisements
Similar presentations
Sampling theory Fourier theory made easy
Advertisements

S. Mandayam/ DIP/ECE Dept./Rowan University Digital Image Processing / Fall 2003 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems Spring 2005 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2011 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2011 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems Spring 2005 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems Spring 2005 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems Spring 2005 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communication Systems ECE Spring 2010 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2009 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2008 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2009 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2008 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2010 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communication Systems ECE Spring 2008 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2009 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ DIP/ECE Dept./Rowan University Digital Image Processing ECE /ECE Fall 2009 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2008 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2011 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2009 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems Spring 2005 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2009 Shreekanth Mandayam Phil Mease ECE Department Rowan.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2009 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2010 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2010 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ DIP/ECE Dept./Rowan University Digital Image Processing ECE /ECE Fall 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Signals & Systems & Music ECE Spring 2010 Shreekanth Mandayam ECE Department Rowan University March.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2010 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2011 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems Spring 2005 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communication Systems ECE Spring 2009 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2010 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2008 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communication Systems ECE Spring 2008 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2011 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems Spring 2005 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2008 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
Lecture 12: Introduction to Discrete Fourier Transform Sections 2.2.3, 2.3.
Fourier Theory in Seismic Processing (From Liner and Ikelle and Amundsen) Temporal aliasing Spatial aliasing.
Discrete-Time and System (A Review)
DTFT And Fourier Transform
Applications of Fourier Transform. Outline Sampling Bandwidth Energy density Power spectral density.
ECE 4710: Lecture #6 1 Bandlimited Signals  Bandlimited waveforms have non-zero spectral components only within a finite frequency range  Waveform is.
EE104: Lecture 5 Outline Review of Last Lecture Introduction to Fourier Transforms Fourier Transform from Fourier Series Fourier Transform Pair and Signal.
Chapter 2 Signals and Spectra (All sections, except Section 8, are covered.)
Eeng360 1 Chapter 2 Fourier Transform and Spectra Topics:  Fourier transform (FT) of a waveform  Properties of Fourier Transforms  Parseval’s Theorem.
Eeng Chapter 2 Discrete Fourier Transform (DFT) Topics:  Discrete Fourier Transform. Using the DFT to Compute the Continuous Fourier Transform.
Fourier Transform and Spectra
Chapter 2 Ideal Sampling and Nyquist Theorem
Lecture 1.4. Sampling. Kotelnikov-Nyquist Theorem.
Hülya Yalçın ©1 Fourier Series. Hülya Yalçın ©2 3.
Digital Image Processing / Fall 2001
Chapter 2 Ideal Sampling and Nyquist Theorem
Chapter 2 Discrete Fourier Transform (DFT)
Rectangular Sampling.
Fourier Transform and Spectra
Electrical Communications Systems ECE Spring 2019
Electrical Communication Systems ECE Spring 2019
Electrical Communications Systems ECE
Electrical Communications Systems ECE
Presentation transcript:

S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems Spring 2005 Shreekanth Mandayam ECE Department Rowan University Lecture 2b February 2, 2005

S. Mandayam/ ECOMMS/ECE Dept./Rowan UniversityPlan CFT’s (spectra) of common waveforms Impulse Sinusoid Rectangular Pulse CFT’s for periodic waveforms Sampling Time-limited and Band-limited waveforms Nyquist Sampling Impulse Sampling Dimensionality Theorem Discrete Fourier Transform (DFT) Fast Fourier Transform (FFT)

S. Mandayam/ ECOMMS/ECE Dept./Rowan University ECOMMS: Topics

S. Mandayam/ ECOMMS/ECE Dept./Rowan University CFT’s of Common Waveforms Impulse (Dirac Delta) Sinusoid Rectangular Pulse Matlab Demo: recpulse.m

S. Mandayam/ ECOMMS/ECE Dept./Rowan University CFT for Periodic Signals Recall: CFT: Aperiodic Signals FS: Periodic Signals We want to get the CFT for a periodic signal What is ?

S. Mandayam/ ECOMMS/ECE Dept./Rowan University CFT for Periodic Signals Sine Wave w(t) = A sin (2  f 0 t) Square Wave A -A T 0 /2 T 0 Instrument Demo

S. Mandayam/ ECOMMS/ECE Dept./Rowan UniversitySampling Time-limited waveform w(t) = 0; |t| > T Band-limited waveform W(f)= F {(w(t)}=0; |f| > B -T T w(t) t -B B W(f) f Can a waveform be both time-limited and band-limited?

S. Mandayam/ ECOMMS/ECE Dept./Rowan University Nyquist Sampling Theorem Any physical waveform can be represented by where If w ( t ) is band-limited to B Hz and

S. Mandayam/ ECOMMS/ECE Dept./Rowan University What does this mean? 1/f s 2/f s 3/f s 4/f s 5/f s w(t) t a 3 = w(3/f s ) If then we can reconstruct w(t) without error by summing weighted, delayed sinc pulses weight = w(n/f s ) delay = n/f s We need to store only “samples” of w(t), i.e., w(n/f s ) The sinc pulses can be generated as needed (How?) Matlab Demo: sampling.m

S. Mandayam/ ECOMMS/ECE Dept./Rowan University Impulse Sampling How do we mathematically represent a sampled waveform in the Time Domain? Frequency Domain?

S. Mandayam/ ECOMMS/ECE Dept./Rowan University Sampling: Spectral Effect w(t) t w s (t ) t f -B 0 B |W(f)| f |W s (f) | -2f s -f s 0 f s 2 f s (-f s -B) -(f s +B) -B B (f s -B) (f s +B) F F Original Sampled

S. Mandayam/ ECOMMS/ECE Dept./Rowan University Spectral Effect of Sampling Spectrum of a “sampled” waveform Spectrum of the “original” waveform replicated every f s Hz =

S. Mandayam/ ECOMMS/ECE Dept./Rowan UniversityAliasing If f s < 2B, the waveform is “undersampled” “aliasing” or “spectral folding” How can we avoid aliasing? Increase f s “Pre-filter” the signal so that it is bandlimited to 2B < f s

S. Mandayam/ ECOMMS/ECE Dept./Rowan University Dimensionality Theorem A real waveform can be completely specified by N = 2BT 0 independent pieces of information over a time interval T 0 N: Dimension of the waveform B: Bandwidth BT 0 : Time-Bandwidth Product Memory calculation for storing the waveform f s >= 2B At least N numbers must be stored over the time interval T0 = n/f s

S. Mandayam/ ECOMMS/ECE Dept./Rowan University Discrete Fourier Transform (DFT) Discrete Domains Discrete Time: k = 0, 1, 2, 3, …………, N-1 Discrete Frequency:n = 0, 1, 2, 3, …………, N-1 Discrete Fourier Transform Inverse DFT Equal time intervals Equal frequency intervals n = 0, 1, 2,….., N-1 k = 0, 1, 2,….., N-1

S. Mandayam/ ECOMMS/ECE Dept./Rowan University Importance of the DFT Allows time domain / spectral domain transformations using discrete arithmetic operations Computational Complexity Raw DFT: N 2 complex operations (= 2N 2 real operations) Fast Fourier Transform (FFT): N log 2 N real operations Fast Fourier Transform (FFT) Cooley and Tukey (1965), ‘Butterfly Algorithm”, exploits the periodicity and symmetry of e -j2  kn/N VLSI implementations: FFT chips Modern DSP

S. Mandayam/ ECOMMS/ECE Dept./Rowan University How to get the frequency axis in the DFT The DFT operation just converts one set of number, x[k] into another set of numbers X[n] - there is no explicit definition of time or frequency How can we relate the DFT to the CFT and obtain spectral amplitudes for discrete frequencies? (N-point FFT) n= n=N f=0 f = f s Need to know f s

S. Mandayam/ ECOMMS/ECE Dept./Rowan UniversitySummary