MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep. 2011 2011/9/17 日本物理学会@弘前大学 1.

Slides:



Advertisements
Similar presentations
MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
Advertisements

Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Status of MEG Physics Analysis Fabrizio Cei INFN and University of Pisa - Italy BVR PSI, 17 February February Fabrizio Cei.
MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II
DONUT Reinhard Schwienhorst DOE review 7/28/1999.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
18 February 2009DCH Analysis1 MEG DCH Analysis MEG Review Meeting 18 February 2009 W. Molzon For the DCH Analysis Working Group.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Status of W analysis in PHENIX Central Arm Kensuke Okada (RBRC) For the PHENIX collaboration RHIC Spin Collaboration meeting November 21, /21/20091K.Okada.
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
Calibration of the ZEUS calorimeter for electrons Alex Tapper Imperial College, London for the ZEUS Collaboration Workshop on Energy Calibration of the.
17 February 2010DCH Analysis1/22 MEG DCH Analysis MEG Review Meeting 17 February 2010 W. Molzon For the DCH Analysis Working Group.
MEG 実験におけるミュー粒子放射崩壊の 測定と利用 日本物理学会第67回年次大会 ICEPP, the University of Tokyo 内山 雄祐.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
MEG II 実験のための 陽電子タイミングカウンターの開発 PSI でのハイレートビーム試験 Development of Positron Timing Counter with SiPM for MEG-II Experiment Beam Test Result in the high rate.
MEG 2009 現状と展望 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション 日本物理学会 2009 年秋季大会 甲南大学岡本キャンパス.
1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.
Muon-raying the ATLAS Detector
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
MEG II 実験のための 陽電子タイミングカウンター実機建設 Construction of Positron Timing Counter for MEG II experiment 西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2015年 秋季大会 大阪市立大学(杉本キャンパス)
Mitglied der Helmholtz-Gemeinschaft Calibration of the COSY-TOF STT & pp Elastic Analysis Sedigheh Jowzaee IKP Group Talk 11 July 2013.
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
The Status of the ATLAS Experiment Dr Alan Watson University of Birmingham on behalf of the ATLAS Collaboration.
Luca Spogli Università Roma Tre & INFN Roma Tre
Status of New TPC( Ⅱ ) Performance Study Yohei Nakatsugawa LEPS Meeting in Taiwan.
16 June, 2015 В.И. Тельнов 1 Two-photon experiments with detector MD1 at VEPP-4 Valery Telnov Budker INP and Novosibirsk St. Univ. PHOTON 2015, June 16,
2004 Fall JPS meeting (English version) K.Okada1 Measurement of prompt photon in sqrt(s)=200GeV pp collisions Kensuke Okada (RIKEN-BNL research center)
HEP Tel Aviv University LumiCal (pads design) Simulation Ronen Ingbir FCAL Simulation meeting, Zeuthen Tel Aviv University HEP experimental Group Collaboration.
Hisayuki Torii1 RHIC-Phenix 実験のための EMCalorimeter のテスト実験と その性能評価 Outline Introduction Beam test setup Calibration method Position dependence Resolution.
Review of τ -mass measurements at e + e - - colliders Yury Tikhonov (Budker INP) Contents  Introduction  Current status of τ-mass measurements and μτ.
PERFORMANCE OF THE PHENIX SOUTH MUON ARM Kenneth F. Read Oak Ridge National Lab & University of Tennessee for the PHENIX Collaboration Quark Matter 2002.
MEG 実験 背景ガンマ線の研究 澤田 龍 MEG コラボーレーション 東京大学素粒子物理国際研究センター 2010 年 9 月 11 日 日本物理学会 2010 年秋季大会 九州工業大学戸畑キャンパス.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
1 Performance and Physics with the CsI(Tl) Array at the Kuo-Sheng Reactor Neutrino Laboratory  Physics with CsI(Tl) detector  Period -2 configuration.
The Detector Performance Study for the Barrel Section of the ATLAS Semiconductor Tracker (SCT) with Cosmic Rays Yoshikazu Nagai (Univ. of Tsukuba) For.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
06/2006I.Larin PrimEx Collaboration meeting  0 analysis.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Study of Charged Hadrons in Au-Au Collisions at with the PHENIX Time Expansion Chamber Dmitri Kotchetkov for the PHENIX Collaboration Department of Physics,
3 May 2003, LHC2003 Symposium, FermiLab Tracking Performance in LHCb, Jeroen van Tilburg 1 Tracking performance in LHCb Tracking Performance Jeroen van.
A. Tsirigotis Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Reconstruction, Background Rejection Tools.
M. Martemianov, ITEP, October 2003 Analysis of ratio BR(K     0 )/BR(K    ) M. Martemianov V. Kulikov Motivation Selection and cuts Trigger efficiency.
Emulsion Test Beam first results Annarita Buonaura, Valeri Tioukov On behalf of Napoli emulsion group This activity was supported by AIDA2020.
Status of physics analysis Fabrizio Cei On Behalf of the Physics Analysis Group PSI BVR presentation, February 9, /02/2015Fabrizio Cei1.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Nikhef Scientific Meeting 2000Onne Peters D0 Muon Spectrometer December 14-15, Amsterdam Onne Peters Nikhef Jamboree 2000.
Open and Hidden Beauty Production in 920 GeV p-N interactions Presented by Mauro Villa for the Hera-B collaboration 2002/3 data taking:
MEG Experiment Data Analysis: a status report
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
Status of MEG-I physics analysis
Riunione della CNS1 a Bari
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
大強度
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
BESIII EMC electronics
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
New Results from the MEG Experiment
Presentation transcript:

MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1

Outline Introduction Run 2009 & 2010 Status of run 2011 Noise reduction Summary and prospects 2011/9/17 日本物理学会@弘前大学 2

Introduction The decay of μ  eγ is strictly forbidden in the standard model because of lepton flavor conservation BUT… some of beyond the SM (e.g. SUSY) predict this decay can happen in the range of Previous upper limit is 1.2x (MEGA experiment) μ  eγ is a good probe to search for new physics ! Background Radiative decay (prompt) Michel decay + γ (accidental) Experimental requirement High resolution detector  reduce background Operation under high luminosity  high statistics μ e γ signal μ e γ ν ν prompt ? μ e γ ν ν accidental dominant 2011/9/17 日本物理学会@弘前大学 3

Introduction The MEG experiment started to search for μ  eγ in 2008 World’s most intense DC μ + PSI 900 litter large Xenon calorimeter  ( 白 :17pSE2, 金子 :17pSE3) The COBRA (COnstant Bending RAdius) spectrometer  main topic Result 2009 & 2010 : Br(μ  eγ) < 2.4x (90 % C.L.) 5 times lower than previous one  ( 大谷 :18aSJ4, 岩本 :19aSD7, 澤田 :19aSD8) Our sensitivity goal is a few × Performance improvement is essential ! 2011/9/17 日本物理学会@弘前大学 4

Introduction The COBRA spectrometer COBRA magnet : fast sweeping low momentum e+ and get uniform angular response for signal e+ Drift chamber : e+ tracking, low mass materials to reduce the production of background gamma ray Vernier pattern method Waveform data acquisition Timing counter : e+ timing, bar counters (φ measuring) + fiber counters (z measuring) 2011/9/17 日本物理学会@弘前大学 5

Introduction The COBRA spectrometer COBRA magnet : fast sweeping low momentum e+ and get uniform angular response for signal e+ Drift chamber : e+ tracking, low mass materials to reduce the production of background gamma ray Vernier pattern method Waveform data acquisition Timing counter : e+ timing, bar counters (φ measuring) + fiber counters (z measuring) 2011/9/17 日本物理学会@弘前大学 6

Introduction The COBRA spectrometer COBRA magnet : fast sweeping low momentum e+ and get uniform angular response for signal e+ Drift chamber : e+ tracking, low mass materials to reduce the production of background gamma ray Vernier pattern method Waveform data acquisition Timing counter : e+ timing, bar counters (φ measuring) + fiber counters (z measuring) 2011/9/17 日本物理学会@弘前大学 7

Introduction Positron measurement Coordinate system Hit reconstruction R  time reading edge Z  charge division w/ Vernier pad Track reconstruction Kalman filter e+e+ θ ◉ e+e+ z (Beam axis) zx φ y R 2011/9/17 日本物理学会@弘前大学 8

Run 2009 & 2010 Run and analysis summary of 2009 and 2010 Drift chamber alignment  Millipede using cosmic rays COBRA Magnetic field  reconstructed field B φ and B r are corrected a possible misalignment of hole probe to conserve the Maxwell’s equations from measured B z All APDs off because of noise problem Drift chamber waveform in 2010 was a little noisier than in 2009 (σ of pedestal : ~1.8 mV  ~2.0 mV) 2011/9/17 日本物理学会@弘前大学 9

Run 2009 & 2010 Performance estimation Momentum resolution : Michel edge fitting and double turn events Angular & vertex resolutions : Double turn events Efficiency : count #of MD Correlations : sideband data Here 2011/9/17 μ e ν ν Michel 日本物理学会@弘前大学 10

Run 2009 & 2010 All performance of the e+ spectrometer are estimated by data itself (radiative decay events, Michel decay events, and so on) EeEe 330 keV (core 82 %)330 keV (core 79 %) φ (at φ=0)6.7 mrad7.2 mrad θ9.4 mrad11.0 mrad Z0.15 cm0.20 cm Y0.11 cm (core 87 %)0.11 cm (core 85 %) T eγ (RMD)150 psec130 psec ε Michel 40 %34 % 2011/9/17 日本物理学会@弘前大学 11

Run 2009 & 2010 All performance of the e+ spectrometer are estimated by data itself (radiative decay events, Michel decay events, and so on) EeEe 330 keV (core 82 %)330 keV (core 79 %) φ (at φ=0)6.7 mrad7.2 mrad θ9.4 mrad11.0 mrad Z0.15 cm0.20 cm Y0.11 cm (core 87 %)0.11 cm (core 85 %) T eγ (RMD)150 psec130 psec ε Michel 40 %34 % Noise + increased dead channels Increased dead channels Better DRS clock 2011/9/17 日本物理学会@弘前大学 12

Status of drift chamber modules were replaced because of increased remaining current or frequent trip Physics data taking started at the end of June In 2009 and 2010, only 14 MHz noise is dominant  reduced by adjusting charge integration time other noise components appeared (>30 MHz from APD fiber counters) Working of hardware noise reduction was done in the middle of July Change HV module for drift chambers and turn off noisy APD channels 2011/9/17 日本物理学会@弘前大学 13 AprilMayJuneJulyAug.Sep. Detector installation Calibration Detector check Physics runCEX 14 MHz

Status of 2011 At the beginning of 2011 run, noise situation was the worst… But 2011/9/17 日本物理学会@弘前大学 14

Status of 2011 At the beginning of 2011 run, noise situation was the worst… After hardware modifications, the lowest noise condition realized ! The APD fiber counters are partially operational now (not all) Data quality to be checked 2011/9/17 日本物理学会@弘前大学 15

Noise reduction Performance of noisy runs and low noise runs compare 2 condition by checking single hit resolutions (residuals between reconstructed wire hit and reconstructed track) Single hit resolutions are estimated from double Gaussian fitting Give up noisy data to improve ?  OF COURSE NO ! Filtering Low pass filter  small contribution High pass filter  distort the shape of signal pulse FFT (noisy)2011 (low noise) Intrinsic Z (um)668 (core 56 %)758 (core 52 %)710 (core 56 %) Intrinsic R (um)209 (core 66 %)233 (core 66 %)197 (core 67 %) ~ 1 month data taking 2011/9/17 日本物理学会@弘前大学 16

Noise reduction Large periodical noises are eliminated in FFT power spectrum from DCH waveform After that, filtered spectrum is transformed inverse to the waveform Charge integration done for filtered waveform FFT 2011/9/17 日本物理学会@弘前大学 17

Noise reduction inverse Large periodical noises are eliminated in FFT power spectrum from DCH waveform After that, filtered spectrum is transformed inverse to the waveform Charge integration done for filtered waveform 2011/9/17 日本物理学会@弘前大学 18

Noise reduction Thanks to offline noise filtering, twice better σ of pedestal realized (2.4 mV  1.2 mV) 2011/9/17 日本物理学会@弘前大学 19

Noise reduction Thanks to offline noise filtering, twice better σ of pedestal realized (2.4 mV  1.2 mV) Single hit Z resolution improved !! 758  664 um, #of hits increased 2011/9/17 日本物理学会@弘前大学 20

Noise reduction Thanks to offline noise filtering, twice better σ of pedestal realized (2.4 mV  1.2 mV) Single hit Z resolution improved !! 758  664 um, #of hits increased Efficiency & resolutions Very good ! Epφθ 432 keV (80 %)  380 keV (79 %) 11.7 mrad (68 %)  12.4 mrad (78 %) 13.1 mrad  11.6 mrad 2011/9/17 日本物理学会@弘前大学 21

Noise reduction Filtering for waveform in low noise condition What happen if FFT filtering used in low noise condition ? Single hit Z resolution Only a few % better (710  697 um) #of hits increased Efficiency and resolutions improved, too 14.4 mrad (84 %)  11.4 mrad (76 %) 12.0 mrad  11.7 mrad 2011/9/17 日本物理学会@弘前大学 keV (82 %)  321 keV (75 %) Epφθ

Performance summary 2011 performance summary (Preliminary) Only parts of data were analyzed Correction for resolutions in 2011 not yet done Calibrations still ongoing noisy2011 low noise Intrinsic Z (um)668 (core 56 %)664 (core 57 %)697 (core 56 %) Intrinsic R (um)209 (core 66 %)237 (core 65 %)201 (core 68 %) E e (keV)330 (core 79 %)380 (core 79 %)321 (core 75 %) φ (mrad)7.2 (core, φ=0)12.4 (core 78 %)11.4 (core 76 %) θ (mrad) #of 2 turn e   /9/17 日本物理学会@弘前大学 23

Summary Thanks to FFT noise filtering, data quality of noisy runs achieved to the level of low noise situation ! Further check needed Transformation accuracy Check with more data Single hit R resolution Prospects Calibrations for the spectrometer in preparation now Better resolutions and efficiency expected Monochromatic calibration source for the spectrometer Mott scattering with e+ beam (energy tunable) Hardware improvement for ε e ( ≒ reduce materials between DC and TC) Readout cable exchange to thinner one (40 %  50 + x %) According to changing cables, the support structure system for drift chambers will be updated Summary and prospects 2011/9/17 日本物理学会@弘前大学 24 current Future candidate

backup 2011/9/17 日本物理学会@弘前大学 25

Vernier method Vernier α is defined as where Compare α to reconstructed z position, we can decide z more precisely wire z 2011/9/17 日本物理学会@弘前大学 26

Positron correlations Correlations 2011/9/17 日本物理学会@弘前大学 27 true reconstructed Case : E meas < E true Y meas < Y true φ meas > φ true …

Efficiency Material between drift chambers and timing counters make lower efficiency because of multiple scattering 2011/9/17 日本物理学会@弘前大学 28

Check for APD data Quality check for APD outputs First step Matching between hit z at fiber and e+ track at timing counter bars Only downstream of APDs are working now z e+e+ MC 2011/9/17 日本物理学会@弘前大学 29

Check for APD data Quality check for APD outputs First step Matching between hit z at fiber and e+ track at timing counter bars  peak position is same, but large tail found Only downstream of APDs are working now z e+e+ MCData ー DS ー US Multiple scattering ? 2011/9/17 日本物理学会@弘前大学 30