M.apollonioam0412071 M. Apollonio University of Oxford update on STEP III.

Slides:



Advertisements
Similar presentations
December 10, 2008 TJRParticle Refrigerator1 The Particle Refrigerator Tom Roberts Muons, Inc. A promising approach to using frictional cooling for reducing.
Advertisements

PID Detector Size & Acceptance Chris Rogers Analysis PC
Injector Optimization for Simultaneous Operation with Different Bunch Charges Yauhen Kot BD Meeting
Emittance definition and MICE staging U. Bravar Univ. of Oxford 1 Apr Topics: a) Figure of merit for MICE b) Performance of MICE stages.
FIGURE OF MERIT FOR MUON IONIZATION COOLING Ulisse Bravar University of Oxford 28 July 2004.
“Amplitude Cooling” in Step III & IV Timothy Carlisle.
Tracker Reconstruction Stuff Timothy Carlisle Oxford.
Cooling channel issues U. Bravar Univ. of Oxford 31-Mar-2004.
MICE analysis meeting - (01/06/2006) 1 few words on emittance growth in step III M. Apollonio – University of Oxford.
M.apollonioMICE Analysis meeting 23/1/20071 M. Apollonio – University of Oxford Radius of diffuser and sizes for PID.
1 26 Nov 2010 SOLID ABSORBERS Solid absorbers will provide first cooling demonstration –This is important for a number of reasons! Can use only solids.
MICE analysis meeting - (4/5/2006) 1 some reflections on scraping, PID sizes and Transmittance M. Apollonio – University of Oxford.
Alain Blondel MICE: Constraints on the solenoids 2.Field Homogeneity: or ? this will be dictated by the detector requirements. TPG will be.
OPTICS UPDATE Ulisse Bravar University of Oxford 3 August 2004.
Downstream transversal sizes Rikard Sandström University of Geneva MICE detector meeting.
PID Detector Size & Acceptance Chris Rogers Analysis PC
M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.
MICE analysis meeting - (6/4/2006) 1 Update on MICE – step III M. Apollonio – University of Oxford.
MICE analysis meeting - (21/09/2006) 1 Transmittance, scraping and maximum radii for MICE STEPVI M. Apollonio – University of Oxford.
MuCool Absorber Review meeting FermiLab, Chicago 21 – 22 February 2003 Fluid Flow and Convective Heat Transfer Modelling by Wing Lau & Stephanie Yang Oxford.
MICE analysis meeting - (26/3/2006) 1 Update on MICE – step III M. Apollonio – University of Oxford.
1 OPTICS OF STAGE III Ulisse Bravar University of Oxford 6 October 2004.
M.apollonioAM STEPIII – sizes and positioning m.apollonio, Oxford.
MICE CM - Fermilab, Chicago - (11/06/2006) 1 A (short) history of MICE – step III M. Apollonio – University of Oxford.
Beamline-to-MICE Matching Ulisse Bravar University of Oxford 2 August 2004 MICE performance with ideal Gaussian beam JUNE04 beam from ISIS beamline (Kevin.
1. Optical matching in MICE Ulisse Bravar University of Oxford 2 June 2004 Constraints Software MICE proposal mismatch MICE Note 49 (September 2004, Bob.
M.apollonioImperial College - London1 M. Apollonio University of Oxford the MICE diffuser: issues and operation MICE beamline review Nov. 16 th 2007 Imperial.
MICE analysis meeting - (18/5/2006) 1 STEPIII: ICOOL vs G4MICE M. Apollonio – University of Oxford.
1 Effect of staging on module connection and support arrangement Yury Ivanyushenkov RAL.
04/01/2006MICE Analysis Meeting1 MICE phase III M. Apollonio, J. Cobb (Univ. of Oxford)
Helical Cooling Channel Simulation with ICOOL and G4BL K. Yonehara Muon collider meeting, Miami Dec. 13, 2004 Slide 1.
Chris Rogers, Analysis Parallel, MICE CM17 Progress in Cooling Channel Simulation.
M.apollonioam M. Apollonio reviving STEPIII S-III: shown 1 st time at CM14 leading idea: use solid absorber(s) and show cooling without mom. recovery.
M.apollonio/j.cobbMICE UK meeting- RAL - (9/1/2007) 1 Single Particle Amplitude M. Apollonio – University of Oxford.
Diffuser Studies Chris Rogers, IC/RAL MICE VC 09 March 2005.
1 STEP III MICE Analysis Workshop RAL – 4/9/2008 m. apollonio, IC.
MICE magnetic measurements Sequence of events and MICE hall movements Alain Blondel – 10-April 2012 revision from 13 December 2012.
Timothy Carlisle, Oxford CM 28. Step 3 Matching Step 3  Step 3 rematched for 830 mm spool piece  Calc. B(z) & BetaFn with the following:  Minimize.
CM37 Alain Blondel step IV physics success 1 « STEP IV operations : Physics »
MICE pencil beam raster scan simulation study Andreas Jansson.
(+) session, PAC09 Vancouver – TH6PFP056 Introduction The Muon Ionisation Cooling Experiment (MICE, fig. 1c) at RAL[1]
M.apollonioCM17 -CERN- (22/2-25/2/2007)1 M. Apollonio – University of Oxford sizes for PID & shields.
Mar 19, 2008 S. Kahn -- RF in HCC Channel 1 Examination of How to Put RF into the HCC Steve Kahn NFMCC Meeting Mar 19, 2008.
1 Forces Yury Ivanyushenkov RAL. 2 Goal: find maximal (static and dynamical) possible forces in MICE magnetic system. Method: calculation of axial magnetic.
Harold G. Kirk Brookhaven National Laboratory Progress in Quad Ring Coolers Ring Cooler Workshop UCLA March 7-8, 2002.
S. Kahn 5 June 2003NuFact03 Tetra Cooling RingPage 1 Tetra Cooling Ring Steve Kahn For V. Balbekov, R. Fernow, S. Kahn, R. Raja, Z. Usubov.
Marco apollonio/J.CobbMICE coll. meeting 16- RAL - (10/10/2006) 1 Transmittance, scraping and maximum radii for MICE STEPVI M. Apollonio – University of.
Bright muon sources Pavel Snopok Illinois Institute of Technology and Fermilab August 29, 2014.
1M. Ellis - NFMCC - 31st January 2007 MICE Analysis.
Magnetism quiz. Draw the magnetic field lines (3 pts each) N S 1. + e I I e N S I
Mechanical Integration for the AD at LNL. Overview New reaction chamber and beam-line Telescopic Beam Line Beam Dump Summary.
1 Search for Worst-Case Forces MICE Video Conference, September 8, 2004 Yury Ivanyushenkov Applied Science Division, Engineering and Instrumentation Department,
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
Step IV Studies Timothy Carlisle Oxford. Intro. CM28 – Step III vs Step IV Cooling formula & G4MICE disagree on – Also observed in ICOOL (note #199 –
14/01/2008MICE CM23 - Beam Line Parallel Session1 Simulations: tools and status Marco Apollonio, Imperial College - London.
Re-tuning MICE June 1 st 2010 Tim Carlisle. Intro At the moment MICE coil currents optimized for: central Pz = 0 RF No LH2 want to rematch M1 & M2 in.
1June 2 nd 2009MICE CM24 - RAL1 m. apollonio Beamline+( ,P) matrix.
Measuring Multiple Scattering in Step IV Timothy Carlisle Oxford See MICE Note 374 for updated results.
1 OPTICS OF MICE STEP V.0 Ulisse Bravar University of New Hampshire 26 June 2005.
MICE Step IV Lattice Design Based on Genetic Algorithm Optimizations Ao Liu on behalf of the MICE collaboration Fermilab Ao Liu on behalf of the MICE collaboration.
(one of the) Request from MPB
CM Nov 2009 DOES MICE NEED STEP III ? Somewhat hard to understand MICE Schedule… –If the gods are (un)kind it’s possible that SS1, SS2 & FC1 are.
Marco apollonioAnalysis Meeting (9/12/2006)1 transmission vs amplitude with a finite size diffuser M. Apollonio – University of Oxford.
Matching free space propagation to plasma focusing S. Barber UCLA Dept. of Physics and Astronomy FACET II Workshop October 15, 2015.
Radiation Shutter Re-Purposing Roy Preece STFC RAL 18 th December 2014.
MICE Step IV Lattice Design Based on Genetic Algorithm Optimizations
M. Migliorati, C. Vaccarezza INFN - LNF
Impact of Magnet Performance on the Physics Program of MICE
DESIGN OPTIONS FOR ORBIT CORRECTORS IN D2 and Q4
Update on ERL Cooler Design Studies
Presentation transcript:

m.apollonioam M. Apollonio University of Oxford update on STEP III

m.apollonioam the case for STAGE III first demonstration of cooling with solid absorber(s) ?

m.apollonioam Matching Coils currents Set up a procedure to find the right MC currents for a matched beam: a)  (trk1-2)=1/ ,  =0 b) fix  (min) Z (m) Chosen configuration must comply with coil/physics constraints: 1- max current 2- temp. margin 3-  (min)  minimise m.s. B (T)  (m)

m.apollonioam mm

m.apollonioam mm T=97.9 % T=98.4 % emi=10 mm rad (a)(b) (a) (b)

m.apollonioam NB: beta_min = 49 cm (was 60cm at CM14) means M1 1.4x, M2 0.7x main issues a)current increase: is it within tolereances? b)magnet forces? c)MC distance = 800 mm. Can it be changed? 300 A!

m.apollonioam emittance growth in vacuum Z (m)  T (final)/  T (initial)  i =1.0 cm rad  T /  T =2.8% 2.8 %  T /  T Z (m)  T (cm rad)

m.apollonioam : emittance evolution in a cylindrical symmetric channel non uniform B z can cause  growth (e.g. flip region) Z (m)  T (m rad) ecalc9 MUC-NOTE 0071 prediction Most of the effect explained

m.apollonioam (a) 13 cm LiH absorber in the middle

m.apollonioam % -3% Pz vs Z emi vs Z Beta= 70cm Beta= 50 cm

m.apollonioam (b) 13 cm LiH absorber in the II solenoid

m.apollonioam vacuum (no absorbers) LiH absorber LiH absorber - vacuum

m.apollonioam equilibrium vacuum growth subtracted emi. % variation

m.apollonioam

m.apollonioam Conclusion 1)Slow B flip  emi growth. Has to be minimized 2)a single absorber seems to work better 3) the middle point cannot have a low beta  cooling effect reduced 4) reduce beta_centre  increase M1 currents  forces 5) better to place abs inside the II solenoid  uneasy 6) transmission: large radius spool piece doesn’t seem to create dramatic effects