Detector Physics Group at the Cavendish Laboratory Click to edit Master title style Detector and Optical Physics Group Cavendish Laboratory Transition Edge Sensor Bolometers D. J. Goldie, M. D. Audley, D. M. Glowacka, V. N. Tsaneva, S. Withington.
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory DPG activities DPG capabilities Optical modelling Electromagnetics Thermal behaviour Device modelling Fabrication (Transition Edge Sensors (TESs), Kinetic Inductance Detectors, SIS tunnel junctions, SQUIDs.. Characterization Detector packaging This talk TESs for CMB polarization experiments
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory ClOVER TEAM Cambridge – M. D. Audley, B. Barker, M. Brown, M. Crane, D. Glowacka, D. Goldie, K. Grainge, A. Lasenby, H. Stevenson, D. Titterington, V. Tsaneva, S. Withington Cardiff – P.A.R Ade, P. G. Calisse, W. Gear, w. Grainger, P. Hargrave, J, House, K. Isaac,, B. Kiernan, P. Mauskopf, S. Parsley, G. Savini, R. V. Sudiwala, C. Tucker, R. Tucker, I. Walker, M. Whitehead, J. Zhang Manchester – L. Piccirillo, P. Diamond, A. Galtress, V. Haynes, P. Leahy, S. Lewis, B. Maffei, L. Martinis, S. Melhuish, G. Pisano, R. Watson, Oxford – M. Brock, P. Cabella, P. Ferreira, P. Grimes, B. Johnson, M. Jones, W. Lau, J. Leech, D. O’Dea, C. North, D. Sutton, A. Taylor, G. Yassin NIST- K. D. Irwin UBC- M. Halpern
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Key Features of CLOVER Two telescopes measuring polarization of CMB: LF: 97 GHz HF: combined 150 and 220 GHz focal plane LF: 96 horns => 192 finline-coupled detectors at 97 GHz Focal Plane: hexagonal array of horns, two polarizations per horn Detectors: Bolometers with superconducting transition edge sensors (TES) Readout: Time-division SQUID multiplexer (NIST, UBC) Sensitivity: limited by unavoidable photon noise (2.2x W/√Hz) HF: 192 horns => probe OMTs in mixed 150/220 GHz focal plane Operating Temperature: 100 mK (active control of bath temperature)
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory CLOVER needs high-performance polarimetry Why Microstrip-coupled TESs? TES design can be optimised separately and doesn’t have to change if the array architecture changes Can include planar band-pass filters, phase shifters, modulators etc. => simple detector becomes multi-function integrated circuit Calibration Flexibility: RF absorption is separated from the bolometer
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Finline-coupled detector, uses a rectangular-waveguide to finline to superconducting microstrip transition. Waveguide probes Grounding ring Low frequencyMid- and high frequency ClOVER TES Detector Designs Polarization-sensitive detector, which uses probes suspended on a SiN x membrane in a circular waveguide.
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory TESs for ClOVER Mo-Cu TESs 500 nm SiN x support and thermal isolation T c 200 mK T bath 100mK
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory ClOVER Science-Grade Detectors T c : 190 mK Power handling: 11 pW 30 chips per wafer
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Slotline coupled to microstrip Detail of the slotline-microstrip transition Single metalization layer for critical dimensions Oxford design
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Response of LF Detector to BB Illumination Blackbody Illuminator Two low-pass filters define band Conical radiator Heat sunk to 1K stage
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Linearity at Fixed Bias
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Excess noise reduction G/4 3G/4 Johnson G2G2 Current noise mainly from Johnson and thermal sources alone. Little excess noise. Dark NEP at 200 mK: 1.75x W/√Hz with G= 172 pW/K
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Effect of Dielectric Loading by Substrate 100% and 89% efficiency 100 μm 225 μm
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Focal-Plane Module for ClOVER
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory LF Detector Module with OMTs Could already populate an 8*8 array
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory ClOVER HF CHANNEL 150 and 220 GHz channels use probes suspended on SiNx membrane across circular waveguide Cardiff rf design Power from opposite probes combined onto a single TES
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Fully processed wafer with 150 GHz devices Four-probe OMT for HF instrument
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Four-probe OMT for HF instrument
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Power Multiplexing Nb1 Ins1 Nb2 Ins3 Nb3
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Response of Four-Probe OMT to Illuminator
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Materials Characterization I K. Rostem et al. J Low Temp Phys (2008) 151: 76–81 Johnson noise thermometry Thermal conductance studies Crucial for next generation low background TESs
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Materials Characterization II Heat capacity measurements Major implications for TES dark noise D. J. Goldie et al. J. Appl. Phys. 105,
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Materials Characterization III Lab on a chip 1 st generation Wideband measurements of microstrip losses K. Rostem et al. J. Appl. Phys. 105,
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Materials Characterization IV Lab on a chip 2 Thermal conductance How to make low G close-packed arrays? Low G TESs for low power applications
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Optical Modelling Bolometer reception patterns Reduced pixel size C. N. Thomas, S. Withington
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory Summary ClOVER TESs Highly developed process route for microstrip coupled TESs High optical detection efficiency for both finline and probe-coupled designs Satisfy ClOVER requirements for dark NEP, power handling and response time Packaging-shielding complete Integrated with time division MUX
TES Bolometers: CMB Workshop Cambridge July 2009 Detector Physics Group at the Cavendish Laboratory The FUTURE Recently kicked-off ESA TRP Cardiff/SRON/Maynooth/RAL Next generation TESs for space missions Far-IR TES detectors Ultra-low noise CMB B-mode detectors ClOVER a significant legacy a significant opportunity