Several tricks (“Z-effective” and “Self Consistent Field”) allow one to correct approximately for the error in using orbitals when there is electron-electron.

Slides:



Advertisements
Similar presentations
Several tricks (Z-effective and Self Consistent Field) allow one to correct approximately for the error in using orbitals when there is electron-electron.
Advertisements

Chemistry 125: Lecture 14 October 4, 2010 Checking Hybridization Theory with XH 3 Infrafred and electron spin resonance experiments with three XH 3 molecules.
Hexagonal “benzene” masks and Franklin’s X-ray pattern of DNA explain how a diffraction pattern in “reciprocal space” relates to the distribution of electrons.
Chemistry 125: Lecture 60 March 23, 2011 NMR Spectroscopy Chemical Shift and Diamagnetic Anisotropy, Spin-Spin Coupling This For copyright notice see final.
Chemistry 125: Lecture 49 February 10, 2010 Electrophilic Addition to Alkenes with Nucleophilic Participation This For copyright notice see final page.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
Atomic and Molecular Orbitals l The horizontal rows of the periodic table are called Periods. l Each period represents a different quantum energy level.
After applying the united-atom “plum-pudding” view of molecular orbitals, introduced in the previous lecture, to more complex molecules, this lecture introduces.
Chemistry 125: Lecture 48 February 8, 2010 Addition to Alkenes a Physical-Organic MO Perspective This For copyright notice see final page of this file.
Chemistry 125: Lecture 69 April 14, 2011 Measuring Bond Energies This For copyright notice see final page of this file.
Chemistry 125: Lecture 14 October 5, 2009 Checking Hybridization Theory with XH 3 Infrafred and electron spin resonance experiments with three XH 3 molecules.
Chem 125 Lecture 13 10/6/2006 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
Chem 125 Lecture 17 10/13/08 This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further. It is not.
Previous examples of “pathological” bonding and the BH 3 molecule illustrate how a chemist’s use of localized bonds, vacant atomic orbitals, and unshared.
Chem 125 Lecture 12 10/1/08 This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further. It is not.
Chemistry 125: Lecture 16 October 9, 2009 Reaction Analogies and Carbonyl Reactivity Comparing the low LUMOs that make both HF and CH 3 F acidic underlines.
Chem 125 Lecture 14 10/6/08 This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further. It is not.
Chemistry 125: Lecture 64 April 7, 2010 Carbonyl Compounds Preliminary This For copyright notice see final page of this file.
Chemistry 125: Lecture 55 February 24, 2010 (4n+2) Aromaticity Cycloaddition Electrocyclic Reactions This For copyright notice see final page of this file.
Chem 125 Lecture 14 10/9/2006 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
Chemistry 125: Lecture 61 March 26, 2010 NMR Spectroscopy Through-Space Coupling, Decoupling & Correlation This For copyright notice see final page of.
Chemistry 125: Lecture 34 Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes Professor Barry Sharpless of Scripps Research Institute describes.
Chemistry 125: Lecture 43 January 25, 2010 Solvation, Ionophores and Brønsted Acidity This For copyright notice see final page of this file.
Chemistry 125: Lecture 66 April 9, 2010 Oxidizing/Reducing Reagents Bookeeping & Mechanism This For copyright notice see final page of this file.
After applying the united-atom “plum-pudding” view of molecular orbitals, introduced in the previous lecture, to a more complex molecule, this lecture.
Chemistry 125: Lecture 66 April 6, 2011 Carbonyl Chemistry: Imines & Enamines Oxidation/Reduction & Electron Transfer This For copyright notice see final.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
Chemistry 125: Lecture 47 February 5, 2010 Addition to Alkenes a Synthetic Perspective guest lecture by Prof. Jay S. Siegel Universit ä t Zurich This For.
Chemistry 125: Lecture 71 April 21, 2010  -H Reactivity (Ch. 19) A Few Topics in Carbohydrate Chemistry (Ch. 22) Preliminary This For copyright notice.
Chemistry 125: Lecture 40 January 15, 2010 Predicting Rate Constants, and Reactivity - Selectivity Relation. Rates of Chain Reactions. This For copyright.
Chemistry 125: Lecture 64 April 2, 2010 Carbonyl Compounds Overview This For copyright notice see final page of this file.
Chemistry 125: Lecture 13 Overlap and Energy-Match Covalent bonding depends primarily on two factors: orbital overlap and energy-match. Overlap depends.
Chem 125 Lecture 10 9/27/06 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
Chemistry 125: Lecture 65 April 7, 2010 Addition to C=O Mechanism & Equilibrium Protecting Groups Oxidation/Reduction & Electron Transfer This For copyright.
Chemistry 125: Lecture 18 Amide, Carboxylic Acid, and Alkyl Lithium The first half of the semester ends by analyzing three functional groups in terms of.
Chemistry 125: Lecture 17 Reaction Analogies and Carbonyl Reactivity In molecular orbital terms there is a close analogy among seemingly disparate organic.
Previous examples of “pathological” bonding and the BH 3 molecule illustrate how a chemist’s use of localized bonds, vacant atomic orbitals, and unshared.
Chem 125 Lecture 12 10/4/2005 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
Chemistry 125: Lecture 57 March 3, 2010 Normal Modes: Mixing and Independence in Infrared Spectroscopy This For copyright notice see final page of this.
Chemistry 125: Lecture 69 April 16, 2010 Decarboxylation (Ch. 17) and Acyl Compounds (Ch. 18) This For copyright notice see final page of this file.
Chem 125 Lecture 11 9/29/08 This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further. It is not.
Chemistry 125: Lecture 36 December 7, 2009 Bond Energies Group- or bond-additivity schemes are useful for understanding heats of formation, especially.
Chemistry 125: Lecture 54 February 22, 2010 Linear and Cyclic Conjugation Allylic Intermediates (4n+2) Aromaticity This For copyright notice see final.
Hexagonal “benzene” masks and Franklin’s X-ray pattern of DNA explain how a diffraction pattern in “reciprocal space” relates to the distribution of electrons.
Chem 125 Lecture 17 10/10/2005 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
After discussion of how increased nuclear charge affects the energies of one-electron atoms and discussion of hybridization, this lecture finally addresses.
Chemistry 125: Lecture 71 April 21, 2010  -H Reactivity (Ch. 19) A Few Topics in Carbohydrate Chemistry (Ch. 22) Preliminary This For copyright notice.
Chem 125 Lecture 10 9/24/08 This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further. It is not.
Chem 125 Lecture 15 10/5/2005 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
Chemistry 125: Lecture 3 Double Minima, Earnshaw’s Theorem, and Plum Puddings The double-well potential of the ozone molecule and its structural equilibrium.
Synchronize when the speaker finishes saying, “…despite Earnshaw...” Synchrony can be adjusted by using the pause(||) and run(>) controls. Chemistry 125:
Chemistry 125: Lecture 62 March 29, 2010 Electrophilic Aromatic Substitution This For copyright notice see final page of this file.
Chemistry 125: Lecture 14 Checking Hybridization Theory with XH 3 Synchronize when the speaker finishes saying “…whether what we have done is realistic.
Double-minimum potentials generate one-dimensional bonding, A different technique is needed to address multi-dimensional problems. Solving Schroedinger’s.
Chemistry 125: Lecture 60 March 24, 2010 NMR Spectroscopy Isotropic J and Dynamics This For copyright notice see final page of this file.
Chem 125 Lecture 15 10/8/08 This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further. It is not.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 23 The Chemical Bond in Diatomic Molecules.
Chemistry 5.12, Lecture #3, 2/10/03 Outline III. Review of Molecular Orbital Theory (Read Chapter 2) A. Atomic Orbitals (2-1) B. Sigma-Bonding (2-2A) C.
MOLECULAR STRUCTURE CHAPTER 14 Experiments show O 2 is paramagnetic.
Hexagonal “benzene” masks and Franklin’s X-ray pattern of DNA explain how a diffraction pattern in “reciprocal space” relates to the distribution of electrons.
Molecular Orbital Theory
Last hour: Electron Spin Triplet electrons “avoid each other”, the WF of the system goes to zero if the two electrons approach each other. Consequence:
This year’s Nobel Prizes in Physics and Chemistry tie in nicely to the subjects of our course, including today’s lecture. Examining the BH 3 molecule illustrates.
Chemistry 125: Lecture 17 October 8, 2010 Carbonyl, Amide, Carboxylic Acid, and Alkyl Lithium The first “half” of the semester ends by analyzing four functional.
Chemistry 125: Lecture 48 February 7, 2011 Alkenes: Stability and Addition Mechanisms Electrophilic Addition This For copyright notice see final page of.
Section 8.3 Bonding Theories. VSEPR Theory Electron dot structures fail to reflect the three dimensional shapes of the molecules. VSEPR Valence Shell.
Chemistry 125: Lecture 49 February 9, 2011 Electrophilic Addition with Nucleophilic Participation This For copyright notice see final page of this file.
Chemistry
For copyright notice see final page of this file
Diamagnetic Anisotropy, Spin-Spin Coupling
Presentation transcript:

Several tricks (“Z-effective” and “Self Consistent Field”) allow one to correct approximately for the error in using orbitals when there is electron-electron repulsion. Residual error is hidden by naming it “Correlation energy.” J.J. Thomson’s Plum-Pudding model of the atom can be modified to visualize the form of molecular orbitals. There is a close analogy in form between the molecular orbitals of CH 4 and NH 3 and the atomic orbitals of neon, which has the same number of protons and electrons. The underlying form, dictated by kinetic energy, is distorted by pulling protons out of the Ne nucleus to play the role of H atoms. Synchronize when the speaker finishes saying “we’ve been looking at atoms.” Synchrony can be adjusted by using the pause(||) and run(>) controls. Chemistry 125: Lecture 11 Orbital Correction and Plum-Pudding Molecules For copyright notice see final page of this file

What's Coming for Next Exam? Molecules Plum-Pudding Molecules (the "United Atom" Limit) Understanding Bonds (Pairwise LCAO) "Energy-Match & Overlap" Reality: Structure (and Dynamics) of XH 3 Molecules Atoms Orbitals for Many-Electron Atoms (Wrong!) Recovering from the Orbital Approximation Payoff for Organic Chemistry! Reactivity HOMOs and LUMOs Recognizing Functional Groups How Organic Chemistry Really Developed (Intro)

2-e Wave Function (r1,1,1,r2,2,2)(r1,1,1,r2,2,2)  a (r 1,  1,  1 )   b (r 2,  2,  2 ) = ? Multiply 1-e Wave Functions 2 22 No way can electrons be independent! They repel one another.

Tricks for Salvaging Orbitals

Pretend that the other electron(s) just reduce the nuclear charge for the orbital of interest. "Clementi-Raimondi" values for Z eff (best fit to better calculations) Atom Z Z eff 1s He s 2p Z - effective Z eff 2s Z eff 2p C Z eff 3s Na ! ! 2s slightly less screened than 2p vice versa for Na Pretty Crude  r 2Z2Z na o 1s = K e -  /2 (subtle) 1s

Self-Consistent Field (SCF) 1. Find approximate orbitals for all electrons (e.g. using Z eff ) 2. Calculate potential from nuclei and... fixed clouds for all electrons but one. 3. Use this new potential to calculate an. an..improved orbital for that one electron. 4. Repeat steps 2 and 3 to improve the orbital for another electron.... Improve all orbitals one by one. Quit When orbital shapes stop changing Cycle back to improve 1 st orbital further, etc. etc.

Still Wrong! because real electrons are not fixed clouds. They keep out of each other’s way by correlating their motions. True Energy < SCF Energy

"Correlation Energy" Hide the residual error after full SCF calculation to the “Hartree-Fock” limit by giving it a fancy name: Where to get correct energy (& total electron density)? by experiment or by a whopping calculation: e.g. “Configuration Interaction” (CI) or “Density Functional Theory” (DFT)

If we’re really lucky, "Correlation Energy" might be Negligible.

"Non-bonded" Contacts (1-20) C Energy Magnitudes Should Chemists care about the error in Orbital Theory? -2 log (Energy Change kcal / mole C Core (2  10 4 ) 1/2  4 Single Bonds (2  10 2 ) 52Å! (2  ) Changes in "correlation energy" can be ~10-15% of Bond Energy. Orbital Theory is fine for Qualitative Understanding of Bonding. C "Correlation Energy" (10 2 ) - C C 12 C Nucleus (2  10 9 ) Loses 0.1 amu (E = mc 2 ) Fortunately nuclear energy is totally unchanged during chemistry! 0.001% change in nuclear energy would overwhelm all of Coulomb. correlation error ≈ bond ~ C Atom (3  10 3 ) 

Orbitals can't be “true” for >1 electron, because of e-e repulsion but we'll use them to understand bonding, structure, energy, and reactivity

What gives Atomic Orbitals their Shape? Potential Energy scales r (via  ) Kinetic Energy creates nodes 4d 2s double the nuclear charge

If we use orbitals, how should we reckon total electron density? Density of electron 1 =  1 2 (x 1,y 1,z 1 ) Density of electron 2 =  2 2 (x 2,y 2,z 2 ) Total density (x,y,z) =  1 2 (x,y,z) +  2 2 (x,y,z) (Sum, not Product. Not a question of joint probability)

How Lumpy is the N Atom? Total = K(r 2 ) e -  (2p x ) 2 = K x 2 e -  (2p y ) 2 = K y 2 e -  (2p z ) 2 = K z 2 e -  Total = K(x 2 + y 2 + z 2 ) e -  Spherical ! [from an Organic Text]

TFDCB C CC C F N is round not clover-leaf nor diamond! C N Triple Bond 2p x 2 + 2p y 2 depends on (x 2 +y 2 ) It is thus symmetrical about the z axis cross section ?

Molecules Plum-Pudding MOs (the "United Atom" Limit) Understanding Bonds (Pairwise LCAO-MOs) “Overlap & Energy-Match" Atoms 3-Dimensional Reality (H-like Atoms) Hybridization Orbitals for Many-Electron Atoms (Wrong!) Recovering from the Orbital Approximation

Ways of Looking at an Elephant

Set of atoms Atoms with small bonding distortion Single “United Atom” Ways of Looking at a Molecule (or a Molecular Orbital) e-density contours of H 2 Which contour should we use? Molecule from set of atoms Molecule as one atom distorted by a fragmented nucleus Nuclei embedded in a cloud of electrons dispersed and “noded” by kinetic energy J. J. Thomson's Plum Pudding! (backwards) Molecule as atoms

How the Plums Distort Electronic Puddings

Methane & Ammonia Spartan 6-31G* calculates good SCF MOs (on my laptop!) We want to understand them visually.

4 Pairs of Valence Electrons H CHH H NHH H Compare MOs to AOs of Ne (4 electron pairs with n=2)

1s CH 4 NH 3 "Core" Orbitals Like 1s of C/N Tightly Held Little Distortion Contour Level e/Å 3 We'll focus on Valence Orbitals Boring!.. 8 valence e -  4 MOs 8 valence e -  4 MOs energy Three “degenerate” Molecular Orbitals

2s..

2s.. “Spherical” node

2p x.. CH 4 NH 3..

CH 4 NH 3 2p y.. CH 4 NH 3..

CH 4 NH 3 2p y.. CH 4 NH 3..

CH 4 NH 3 2p z HOMO Lewis's "unshared pair".. CH 4 NH 3.. +Unoccupied Orbitals

CH 4 NH 3 3s LUMO "HUMO?"..

2s CH 4 NH 3 3s LUMO "HUMO"..

CH 4 NH 3 3d x 2 -y 2..

CH 4 NH 3 3d x 2 -y 2..

CH 4 NH 3 3d xy..

CH 4 NH 3 3d xy..

CH 4 3d z 2..

End of Lecture 11 Sept. 29, 2008 Copyright © J. M. McBride Some rights reserved. Except for cited third-party materials, and those used by visiting speakers, all content is licensed under a Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0).Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0) Use of this content constitutes your acceptance of the noted license and the terms and conditions of use. Materials from Wikimedia Commons are denoted by the symbol. Third party materials may be subject to additional intellectual property notices, information, or restrictions. The following attribution may be used when reusing material that is not identified as third-party content: J. M. McBride, Chem 125. License: Creative Commons BY-NC-SA 3.0