6/2/07GLCW8 1 Detecting galactic structure via the annual modulation signal of WIMPs Christopher M. Savage Fine Theoretical Physics Institute University.

Slides:



Advertisements
Similar presentations
Diurnal and Annual Modulation of Cold Dark Matter Signals Ling Fu-Sin IDM2004, Edinburgh, Sept. 8th 2004 in collaboration with Pierre Sikivie & Stuart.
Advertisements

Abstract Dark matter is a generic term for an exotic class of particles that might provide sufficient gravity to explain the observed movements of stars.
Matter Content of the Universe David Spergel March 2006 Valencia, Spain.
The Halo of the Milky Heidi Jo Newberg Rensselaer Polytechnic Institute.
Dark Matter Burners at the Galactic Center Igor Moskalenko & Larry Wai (STANFORD & KIPAC)
Dark Matter Da yang Jacob Daeffler. What do we mean by dark matter? Material whose presence can be inferred from its effects on the motions of stars and.
Axion BEC Dark Matter Pierre Sikivie Vistas in Axion Physics Seattle, April 22-26, 2012 Collaborators: Ozgur Erken, Heywood Tam, Qiaoli Yang.
What mass are the smallest protohalos in thermal WIMP dark-matter models? Kris Sigurdson Institute for Advanced Study Space Telescope Science Institute.
ANGULAR MOMENTUM AND THE STRUCTURE OF DM HALOS Chiara Tonini Special guest: Andrea Lapi Director: Paolo Salucci C.T., A. Lapi & P. Salucci (astro-ph/ ,
TeV Particle Astrophysics, Venice, August 29, 2007J. Siegal-Gaskins1 Signatures of ΛCDM substructure in tidal debris Jennifer Siegal-Gaskins in collaboration.
Tidal Disruption of Globular Clusters in Dwarf Galaxies J. Peñarrubia Santiago 2011 in collaboration with: M.Walker; G. Gilmore & S. Koposov.
Miami 2008, Fort Lauderdale, Dec. 2008Niayesh Afshordi, Perimeter Institute Niayesh Afshordi.
Galactic archaeology Rodrigo Ibata Observatoire de Strasbourg.
Breaking tidal stream degeneracies with LAMOST Jorge Peñarrubia (IoA) Cambridge 2nd December 08.
The Milky Way PHYS390 Astrophysics Professor Lee Carkner Lecture 19.
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Chapter 23: Our Galaxy Our location in the galaxy Structure of the galaxy Dark matter Spiral arm formation Our own supermassive black hole.
Simon Portegies Zwart (Univ. Amsterdam with 2 GRAPE-6 boards)
The Milky Way Galaxy James Binney Oxford University.
A Galactic halo road map The halo stars : where, whither, whence? Chris Thom, Jyrki Hänninen, Johan Holmberg, Chris Flynn Tuorla Observatory Swinburne.
THE STRUCTURE OF COLD DARK MATTER HALOS J. Navarro, C. Frenk, S. White 2097 citations to NFW paper to date.
12/9/04KICP - Spin Dependent Limits 1 Can WIMP Spin Dependent Couplings explain DAMA? Limits from DAMA and Other Experiments Christopher M. Savage University.
Levels of organization: Stellar Systems Stellar Clusters Galaxies Galaxy Clusters Galaxy Superclusters The Universe Everyone should know where they live:
The Milky Way and Other Galaxies Science A-36 12/4/2007.
Christopher | Vlad | David | Nino SUPERMASSIVE BLACK HOLES.
Form Factor Dark Matter Brian Feldstein Boston University In Preparation -B.F., L. Fitzpatrick and E. Katz In Preparation -B.F., L. Fitzpatrick, E. Katz.
Components of the Milky Way The light from galaxies is centrally concentrated. But is the mass also centrally concentrated? Does Mass follow Light in Galaxies?
January 25, 2006 NCW, Nice 1 1 Caustics in Dark Matter Halos Sergei Shandarin, University of Kansas (collaboration with Roya Mohayaee, IAP) Nonlinear Cosmology.
Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie (U. of Florida) Center for Particle Astrophysics Fermilab, August 6, 2009.
DARK MATTER ON DEPARTMENT SCALE Daniele Fantin (M. Merrifield, A. Green) (M. Merrifield, A. Green) University of Nottingham Bologna, 2 April 2009.
The Dark Side of the Universe Sukanya Chakrabarti (FAU)
An argument that the dark matter is axions Pierre Sikivie Miami 2013 Conference Fort Lauderdale, December 16, 2013 Collaborators: Ozgur Erken, Heywood.
Masses of Galaxy Groups Brent Tully University of Hawaii.
Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie ASK2011 Conference Seoul, Korea April 11, 2011.
Diaspora in Cercetarea Stiintifica Bucuresti, Sept The Milky Way and its Satellite System in 3D Velocity Space: Its Place in the Current Cosmological.
Numerical Simulations of Galaxy Formation in a LCDM Universe Mario G. Abadi Observatorio Astronómico De La Universidad Nacional De Córdoba CONICET, Argentina.
 SIM-Lite: 6 m baseline optical interferometer in space for precision/deep astrometry.  Pointing mode not survey (spinning).  SIM concept is finishing.
Directional Statistics for WIMP direct detection Anne Green Astro-Particle Theory and Cosmology Group University of Sheffield Ben Morgan, AMG and Neil.
Lecture 29: From Smooth to Lumpy Astronomy 1143 – Spring 2014.
中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS Constraints on the cross-section of dark matter annihilation from Fermi observation of M31 Zhengwei Li Payload.
DARK MATTER & GALACTIC ROTATION 2012 ASTRO SUMMER SCHOOL.
Spiral Triggering of Star Formation Ian Bonnell, Clare Dobbs Tom Robitaille, University of St Andrews Jim Pringle IoA, Cambridge.
Lecture 39: Dark Matter review from last time: quasars first discovered in radio, but not all quasars are detected in the radio first discovered in radio,
Dynamic and Spatial Properties of Satellites in Isolated Galactic Systems Abel B. Diaz.
Bose-Einstein Condensation of Dark Matter Axions
Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie COSMO/CosPA 2010 Conference The University of Tokyo September 27 - October 1, 2010.
Dark Matter Search with Direction Sensitive Scintillators The10th ICEPP Symposium February 16, 2004, Hakuba H. Sekiya University of Tokyo.
Daily Modulation of the Dark Matter Signal in Crystalline Detectors Nassim Bozorgnia UCLA TexPoint fonts used in EMF. Read the TexPoint manual before you.
Vergados DSU11 29/09/11 Direct Dark Matter Searches- Exploiting its Various Signatures J.D. Vergados J.D. Vergados University of Ioannina, Ioannina, Greece.
On the other hand.... CDM simulations consistently produce halos that are cusped at the center. This has been known since the 1980’s, and has been popularized.
Implications of CoGeNT's New Results For Dark Matter Chris Kelso University of Chicago DESY Theory Workshop Sep. 28, 2011.
Indirect Detection Of Dark Matter
Probing the dark matter distribution in the Milky Way with tidal streams Monica Valluri Kavli Institute for Cosmological Physics University of Chicago.
Dark Matter in the Milky Way - how to find it using Gaia and other surveys Paul McMillan Surveys For All, 1st February 2016.
Bose-Einstein Condensation of Dark Matter Axions Pierre Sikivie Miami 2011 Conference Fort Lauderdale, December 19, 2011 Collaborators: Ozgur Erken, Heywood.
Galaxy Formation Collapse of an over-dense region of space (containing more gas and dark matter than average) under gravity Disks are produced as the cloud.
Potential for Dark Matter Direct Searches in Australia Professor Elisabetta Barberio The University of Melbourne.
An argument that the dark matter is axions Pierre Sikivie IPTh seminar Saclay, 11 Juin, 2015 Collaborators: Ozgur Erken, Heywood Tam, Qiaoli Yang Nilanjan.
Konstantinos Dimopoulos Lancaster University Work done with: Sam Cormack arXiv: [astro-ph.HE]
The prolate shape of the Galactic halo Amina Helmi Kapteyn Astronomical Institute.
University of Patras / Greece
KIMS & Inelastic DarK Matter(iDM)
Christopher M. Savage Fine Theoretical Physics Institute
WIMP direct detection:
Direct Detection of Dark Matter
Christopher M. Savage University of Michigan – Ann Arbor
Cold Dark Matter Flows and Caustics
Dark Matter Search with Stilbene Scintillator
Hierarchy in the phase space and dark matter Astronomy
The Case for Axion Dark Matter
Presentation transcript:

6/2/07GLCW8 1 Detecting galactic structure via the annual modulation signal of WIMPs Christopher M. Savage Fine Theoretical Physics Institute University of Minnesota Katie Freese (University of Michigan) Paolo Gondolo (University of Utah) PRD 74, (2006)

6/2/07GLCW8 2 Overview Galactic dark matter halo Early collapse of of dark matter virialized  smooth/diffuse halo (position & velocity space) Turbulent; late accretion  streams (“cold” flow)  Clumps  Tidal streams  Caustics WIMP direct detection signatures  Energy  Time (annual modulation)

6/2/07GLCW8 3 Halo Galaxy formation gravitational collapse Standard Halo Model Isothermal sphere Non-rotating D. Dixon, cosmographica.com

6/2/07GLCW8 4 Halo Substructure Tidal streams Dwarf galaxies Sagittarius Stream Clumps Hierarchical clustering Caustics D. Martinez-Delgado & G. Perez Newberg et al. (2003) Freese, Gondolo & Newberg (2003) Klypin et al. (1999); Moore et al. (1999) Stiff, Widrow & Frieman (2001) V. Springer Gunn & Gott (1972) Sikivie, Tkachev & Wang (1995,1997)

6/2/07GLCW8 5 Halo Smooth halo component (dominant?) + streams / “cold” flows Local DM density: ~ 0.3 GeV/cm 3 Typical velocities: v ~ 100’s km/s Local velocity distribution: Mean inverse velocity:

6/2/07GLCW8 6 Halo Velocity distribution

6/2/07GLCW8 7 Halo Mean inverse velocity

6/2/07GLCW8 8 Direct Detection Elastic scattering of WIMP off detector nuclei Rate: CDMS, CRESST, DRIFT, EDELWEISS, NAIAD, PICASSO,SIMPLE, XENON, ZEPLIN, etc. Detector WIMP Scatter Goodman & Witten (1985) particle physicsastrophysics

6/2/07GLCW8 9 Annual Modulation Earth’s motion With disk (June) Against disk (December) DAMA/NaI (R. Bernabei et al., 2003) Modulation amplitude: ± /kg/day/keVee (2-6 keVee) DAMA/LIBRA 30 km/s ~300 km/s WIMP Halo Wind Drukier, Freese & Spergel (1986)

6/2/07GLCW8 10 Standard Halo Model (SHM) Non-rotating, isothermal sphere  v = 270 km/s  0 = 0.3 GeV/cm 3 (    ) Detector velocity: v det (t) = v  + V  (t) Sun’s velocity v  (disk rotation ~220 km/s) Earth’s orbital velocity V  (t) Characteristic time t c : v obs maximum (June 1 for SHM) Freese, Frieman & Gould (1988)

6/2/07GLCW8 11 Mean Inverse Speed: SHM Phase reversal Small modulation amplitude (few percent)

6/2/07GLCW8 12 Modulation: SHM Characteristic time t c (June 1)

6/2/07GLCW8 13 …Add a Stream Sagittarius (Sgr) stream Yanni et al (2003) Sagittarius-like stream (for illustration) Direction & speed (~340 km/s) Dispersion:  v = 25 km/s Density:  Sgr = 0.05  SHM  Sgr stream: % Freese, Gondolo & Newberg (2003)  Clumps: 1-5% Stiff, Widrow & Frieman (2001)  Caustic ring model: ~75% Sikivie, Tkachev & Wang (1995) APOD 9/30/03 (Martinez-Delgado & Perez)

6/2/07GLCW8 14 Mean Inverse Speed: SHM + Stream no dispersion (  v = 0) Cutoff Energy E co (t) Characteristic Energy E c = (39 keV)

6/2/07GLCW8 15 Mean Inverse Speed: SHM + Stream with dispersion (  v > 0)

6/2/07GLCW8 16 Modulation: SHM + Stream 5% Stream!!!

6/2/07GLCW8 17 Modulation: Recoil Energy Sgr stream modulation Characteristic time t c (Dec 28)

6/2/07GLCW8 18 Modulation: Recoil Energy Total modulation

6/2/07GLCW8 19 Modulation: Recoil Energy Binning

6/2/07GLCW8 20 Modulation: Stream Density

6/2/07GLCW8 21 General Streams / Cold Flows Phase of modulation (t c ) independent of SHM Rapid dropoff in count rate near some characteristic energy E c Small, cosine-like modulation below E c Large O(1) modulation near E c (not cosine-like) E c, t c differ from Sagittarius stream

6/2/07GLCW8 22 Extracting Parameters Characteristic energy E c  cold flow speed Characteristic time t c  cold flow direction (1 component) Modulation amplitude  relative densities (  Str /  SHM ) More difficult: cold flow dispersion 2 nd direction component

6/2/07GLCW8 23 Summary Local Halo: presence of streams / cold flows Small component Annual modulation Mild effect …except near some characteristic energy:  Relatively large effect  Not cosine-like Modulation detection: probe structure of halo …sooner!