45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York ECLOUD News 1) Bug in SEY model fixed 2) List of present activities.

Slides:



Advertisements
Similar presentations
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
Advertisements

Latest ILC DR wiggler simulations M. Pivi, T. Raubenheimer, L. Wang (SLAC) July, 2005.
RedOffice.com Presentation templates Slide No. 1 RFA Detector Data of Electron Cloud Build-up and Simulations Eric Wilkinson Mentor: Jim Crittenden Cornell.
Using Tune Shifts to Evaluate Electron Cloud Effects on Beam Dynamics at CesrTA Jennifer Chu Mentors: Dr. David Kreinick and Dr. Gerry Dugan 8/11/2011REU.
E-Cloud Effects in the Proposed CERN PS2 Synchrotron M. Venturini, M. Furman, and J-L Vay (LBNL) ECLOUD10 Workshshop, Oct Cornell University Work.
Comparison of ECLOUD and POSINST Calculations of Coherent Tune Shifts with Emphasis on the Relative Drift and Dipole Contributions Jim Crittenden Cornell.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden & John Sikora Cornell Laboratory for Accelerator-Based.
ECLOUD Calculations of Field Gradients During Bunch Passage Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education Electron Cloud.
LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with CHESS to become the Cornell Laboratory for Accelerator-based Sciences.
Early Results on a Search for Cyclotron Resonances in ECLOUD -- Collaboration with Eric Wilkinson -- These slides includes corrections arising from the.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Resolution of ECLOUD Tune Shift Calculation Instability Jim Crittenden.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Modelling Cyclotron Resonances in ECLOUD 1) Comparison with CesrTA.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York ECLOUD Simulations for the Tune Shift Measurements of December.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 Measurements - Study of SEY Model Effects - Jim Crittenden Cornell Laboratory for Accelerator-Based.
Comparison of Primary Photoelectron Generation in ECLOUD, CLOUDLAND and POSINST Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 Measurements - Study of SEY Model Effects - Jim Crittenden Cornell Laboratory for Accelerator-Based.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 and January 2009 Measurements - Preparation for PAC2009 FR5RF Paper and Poster - “Effects.
LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with CHESS to become the Cornell Laboratory for Accelerator-based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Preliminary Results on the Introduction of the Rediffused SEY Component.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Modeling Cyclotron Resonances in ECLOUD Jim Crittenden Cornell Laboratory.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Comparison of ECLOUD Calculations in Dipole and Quadrupole Fields.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 Measurements - This presentation limited to resolving drift/dipole weighting question -
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Recent Studies with ECLOUD Jim Crittenden Cornell Laboratory for.
ElectronsdFud Simulation Work at Cornell Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education.
Space Charge Electric-Field Calculations for Coherent Tune Shift Estimations using the Electron-cloud Modelling Algorithm ECLOUD Jim Crittenden Cornell.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 Measurements - Thanks to Marco for clarifying the drift/dipole weighting - - Thanks to Gerry.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Electron Cloud Simulation Studies for CesrTA Jim Crittenden Cornell.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York ECLOUD Simulations for the Tune Shift Measurements of December.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Comparison of ECLOUD Calculations in Dipole and Quadrupole Fields.
ECLOUD Simulations for CESR Witness Bunch Tune Shift Measurements Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education.
CESR Synchrotron Radiation Tables and Electron Cloud Modelling Input Parameters Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York First Results on the Introduction of the Rediffused SEY Component.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York CesrTA Electron Cloud Measurements and Simulations Jim Crittenden.
49th ICFA Advanced Beam Dynamics Workshop October 8 –12, 2010 LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
The Secondary Electron Yield Model in ECLOUD and Comparison to CLOUDLAND Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
Electron Clouds at SLAC Johnny Ng ILC Damping Rings Collaboration Meeting March 4, 2009.
Electron cloud measurements and simulations at CesrTA G. Dugan, Cornell University 4/19/09 TILC09 4/18/09.
Shielded-Pickup Measurements in June and Update on Modeling Results / J.A. Crittenden 23 August / 4 Shielded-Pickup Measurements in June and Update.
2nd International Particle Accelerator Conference September 4–9, 2011, San Sebastián, Spain LEPP, the Cornell University Laboratory for Elementary-Particle.
3 February 2010 ILC Damping Ring electron cloud WG effort Mauro Pivi SLAC on behalf of ILC DR working group on e- cloud ILC DR Webex Meeting Jan 3, 2010.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden & John Sikora Cornell Laboratory for Accelerator-Based.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with CHESS to become the Cornell Laboratory for Accelerator-based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jared Ginsberg Cornell Laboratory for Accelerator-Based Sciences.
Status of ECLOUD Simulations for the Shielded Button Measurements
Update to ECLOUD Calculations for the
Electron Cloud Meeting
Physics Scope and Work Plan for the Shielded-Pickup Measurements -- Synchrotron Radiation Photon Distributions Photoelectron Production Parameters.
First Look at the New SYNRAD3D Results
Detailed Characterization of Vacuum Chamber Surface Properties Using Measurements of the Time Dependence of Electron Cloud Development Jim Crittenden.
RECENT DEVELOPMENTS IN MODELING
Use of the Shielded-Pickup Measurements for Optimization of the Photoelectron Production Energy Distribution in ECLOUD -- This topic was included in the.
Physics Scope and Work Plan for the Shielded-Pickup Measurements -- Synchrotron Radiation Photon Distributions Photoelectron Production Parameters.
First Look at Modeling Photoelectron Energy Distribution for a 2
Shielded Button Measurement/ECLOUD Simulation Comparison for 5
Electron Cloud Meeting
Ryan Badman Jim Crittenden July 20, 2011 Electron Cloud Meeting
All material for this talk may be obtained at
ILC DR instability simulations
ILC Damping Ring electron cloud WG effort
CTA 09 - Introduction David Rubin Cornell Laboratory for
45 e+ bunches, 4-ns spacing, 0.9 mA/bunch
Presentation transcript:

45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York ECLOUD News 1) Bug in SEY model fixed 2) List of present activities Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education Electron Cloud Simulations Meeting 8 July 2009

ECLOUD News / J.A.Crittenden 2/6 CTA09 Talk Slide 11: ECLOUD Secondary Yield Distribution for TiN The SEY curve for TiN results in a low yield region being populated by the resonant energy enhancement. Off resonanceOn resonance Why is d max = 0.5 rather than the input file value of 0.95 ??

8 July 2009 ECLOUD News / J.A.Crittenden 3/6 ECLOUD Routine Seiler The bug affects only the results using the SEY elastic option 3 (CTA09). if (inel.eq.1.or.inel.eq.2) then enem=yemax if(enem.le.300) then qtelast = frac1(enem)/(1-frac1(enem)) else qtelast = frac2(enem)/(1-frac2(enem)) endif if (inel.eq.2) then ene0=0.1d0 qtene0 = yield(ene0,costheta0,yim,yemax) qtelast = dexp(-enem/4.d0)*(1.-qtene0* & frac1(ene0)/(1-frac1(ene0)))+qtelast endif else if (inel.eq.3) then qtelast = ((sqrt(enem)-sqrt(enem+150))**2/(sqrt(enem)+ & sqrt(enem+150))**2) endif c c rescale delta_max only for inel=2,3, not for inel=1, c to be consistent with Noel's fitting c if (inel.eq.2.or.inel.eq.3) then yim=yim*yim/(yim+qtelast) endif Variable enem not initialized for inel = 3, but used to rescale d max Consequence: d max indeterminate

8 July 2009 ECLOUD News / J.A.Crittenden 4/6 Kanazawa suggestion: Scan d max and Epeak (after bug fix) ECLOUD can produce resonant suppression, but only for lower d max than we expect for TiN  peak = 0.8 E peak = 500 eV

8 July 2009 ECLOUD News / J.A.Crittenden 5/6 List of ECLOUD Activities 1. Repeat modelling of CesrTA chicane data (Improve input parameters with local lattice info) 2. Collaboration with Mauro Pivi on comparing POSINST and ECLOUD results for both CesrTA and PEP-II data 3. Develop predictions for electron beam data in the chicane (Eric Wilkinson)

8 July 2009 ECLOUD News / J.A.Crittenden 6/6 Modelling Electron Beam in Chicane Caveat: ECLOUD bug still here. d max was rescaled from 2.0 to 1.3.  peak = 1.3 E peak = 310 eV ECLOUD can find resonant maxima and minima in the same chicane scan