1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.

Slides:



Advertisements
Similar presentations
Pertemuan 03 Teori Peluang (Probabilitas)
Advertisements

1 Pertemuan 07 Hitung Peluang Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 Pertemuan 02 Analisis Data Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
Peubah Acak Kontinu Pertemuan 09 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 04 Ukuran Pemusatan dan Penyebaran Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 Pertemuan 06 Peluang Beberapa Sebaran Khusus Peubah Acak Diskrit Mata kuliah: A Statistik Ekonomi Tahun: 2010.
1 Pertemuan 07 Variabel Acak Diskrit dan Kontinu Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Continuous Random Variables. For discrete random variables, we required that Y was limited to a finite (or countably infinite) set of values. Now, for.
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Probability Densities
Review.
Continuous Random Variables and Probability Distributions
Today Today: Chapter 5 Reading: –Chapter 5 (not 5.12) –Suggested problems: 5.1, 5.2, 5.3, 5.15, 5.25, 5.33, 5.38, 5.47, 5.53, 5.62.
1 Pertemuan 7 Variabel Acak-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 09 Peubah Acak Kontinu Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 03 Ukuran Pemusatan dan Lokasi Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 07 Peubah Acak Diskrit Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 20 Time & Condition Clauses with Future reference Matakuliah: G0134 – Grammar III Tahun: 2005 Versi: revisi 1.
Section 3.3 If the space of a random variable X consists of discrete points, then X is said to be a random variable of the discrete type. If the space.
A random variable that has the following pmf is said to be a binomial random variable with parameters n, p The Binomial random variable.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 8 Variabel Acak-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 04 Peubah Acak dan Sebaran Peluang Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
Continuous Random Variables and Probability Distributions
1 Pertemuan 08 Pengujian Hipotesis 1 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 4 Continuous Random Variables and Probability Distributions.
Copyright © Cengage Learning. All rights reserved. 4 Continuous Random Variables and Probability Distributions.
LECTURE UNIT 4.3 Normal Random Variables and Normal Probability Distributions.
Chapter 4 Continuous Random Variables and Probability Distributions
Moment Generating Functions
1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Probability & Statistics I IE 254 Summer 1999 Chapter 4  Continuous Random Variables  What is the difference between a discrete & a continuous R.V.?
Peubah Acak Pertemuan 3 Matakuliah: D Statistika dan Aplikasinya Tahun: 2010.
 Random variables can be classified as either discrete or continuous.  Example: ◦ Discrete: mostly counts ◦ Continuous: time, distance, etc.
CONTINUOUS RANDOM VARIABLES
Topic 5: Continuous Random Variables and Probability Distributions CEE 11 Spring 2002 Dr. Amelia Regan These notes draw liberally from the class text,
Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Chapter 5 CONTINUOUS RANDOM VARIABLES
Chapter 6: Continuous Probability Distributions A visual comparison.
Continuous Random Variables and Probability Distributions
Chapter 3 Discrete Random Variables and Probability Distributions  Random Variables.2 - Probability Distributions for Discrete Random Variables.3.
1 Pertemuan 10 Sebaran Binomial dan Poisson Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 Pertemuan 24 Uji Kebaikan Suai Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Sebaran Normal dan Normal Baku Pertemuan 11 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Lesson 99 - Continuous Random Variables HL Math - Santowski.
Random Variables By: 1.
1 Pertemuan 19 Analisis Varians Klasifikasi Satu Arah Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
Copyright © Cengage Learning. All rights reserved. 4 Continuous Random Variables and Probability Distributions.
Pertemuan 17 Analisis Varians Klasifikasi Satu Arah
SEBARAN NORMAL Pertemuan 6
Peubah Acak Diskrit Pertemuan 07
Random Variable 2013.
Pertemuan 01 Data dan Statistika
Pertemuan 10 Analisis data -I
The Exponential and Gamma Distributions
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Pertemuan 17 Pengujian Hipotesis
Ch4.2 Cumulative Distribution Functions
Cumulative distribution functions and expected values
Pertemuan 13 Pendugaan Parameter Nilai Tengah
Pertemuan 13 Sebaran Seragam dan Eksponensial
CONTINUOUS RANDOM VARIABLES
Statistics Lecture 13.
Probability Review for Financial Engineers
Sebaran Normal dan Normal Baku Pertemuan 4
Presentation transcript:

1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung nilai harapan, dan ragam peubah acak kontinu.

3 Outline Materi Konsep dasar Nilai harapan dan ragam Sebaran normal Hampiran normal terhadap Binomial Sebaran khusus : Eksponensial, Gamma, Beta, dst.

4 Continuous Random Variables A random variable X is continuous if its set of possible values is an entire interval of numbers (If A < B, then any number x between A and B is possible).

5 Probability Density Function For f (x) to be a pdf 1. f (x) > 0 for all values of x. 2.The area of the region between the graph of f and the x – axis is equal to 1. Area = 1

6 Probability Distribution Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f (x) such that for any two numbers a and b, The graph of f is the density curve.

7 Probability Density Function is given by the area of the shaded region. ba

8 Important difference of pmf and pdf Y, a discrete r.v. with pmf f(y) X, a continuous r.v. with pdf f(x); f(y)=P(Y = k) = probability that the outcome is k. f(x) is a particular function with the property that for any event A (a,b), P(A) is the integral of f over A.

9 Ex 1. (4.1) X = amount of time for which a book on 2-hour reserve at a college library is checked out by a randomly selected student and suppose that X has density function.

10 Uniform Distribution A continuous rv X is said to have a uniform distribution on the interval [a, b] if the pdf of X is X ~ U (a,b)

11 Exponential distribution X is said to have the exponential distribution if for some

12 Probability for a Continuous rv If X is a continuous rv, then for any number c, P(x = c) = 0. For any two numbers a and b with a < b,

13 Expected Value The expected or mean value of a continuous rv X with pdf f (x) is The expected or mean value of a discrete rv X with pmf f (x) is

14 Expected Value of h(X) If X is a continuous rv with pdf f(x) and h(x) is any function of X, then If X is a discrete rv with pmf f(x) and h(x) is any function of X, then

15 Variance and Standard Deviation The variance of continuous rv X with pdf f(x) and mean is The standard deviation is

16 Short-cut Formula for Variance

17 The Cumulative Distribution Function The cumulative distribution function, F(x) for a continuous rv X is defined for every number x by For each x, F(x) is the area under the density curve to the left of x.

18 Using F(x) to Compute Probabilities Let X be a continuous rv with pdf f(x) and cdf F(x). Then for any number a, and for any numbers a and b with a < b,

19 Ex 6 (Continue). X = length of time in remission, and What is the probability that a malaria patient’s remission lasts long than one year?

20 Obtaining f(x) from F(x) If X is a continuous rv with pdf f(x) and cdf F(x), then at every number x for which the derivative

21 Percentiles Let p be a number between 0 and 1. The (100p)th percentile of the distribution of a continuous rv X denoted by, is defined by

22 Median The median of a continuous distribution, denoted by, is the 50 th percentile. So satisfies That is, half the area under the density curve is to the left of

23 Selamat Belajar Semoga Sukses.