Ideas for Experimental Realization of Neutral Atom Quantum Computing 演 講 者:蔡 錦 俊 成功大學物理系

Slides:



Advertisements
Similar presentations
Quantum Theory of Collective Atomic Recoil in Ring Cavities
Advertisements

Introduction to Quantum Computers Goren Gordon The Gordon Residence July 2006.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Cooling a mechanical oscillator to its quantum ground state enables the exploration of the quantum nature and the quantum–classical boundary of an otherwise.
An Optical Receiver for Interplanetary Communications Jeremy Bailey.
Quantum random walks Andre Kochanke Max-Planck-Institute of Quantum Optics 7/27/2011.
The Bose-Einstein Condensate Jim Fung Phys 4D Jim Fung Phys 4D.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Optical Tweezers F scatt F grad 1. Velocity autocorrelation function from the Langevin model kinetic property property of equilibrium fluctuations For.
冷原子實驗之基本原理 (I) 韓殿君 國立中正大學物理系 2003 年 8 月 5 日 於理論中心.
Quantum Computing with Trapped Ion Hyperfine Qubits.
~ 12  m Neutral atom quantum computing in optical lattices: far red or far blue? C. S. Adams University of Durham 17 November 2004 University of Durham.
Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
PBG CAVITY IN NV-DIAMOND FOR QUANTUM COMPUTING Team: John-Kwong Lee (Grad Student) Dr. Renu Tripathi (Post-Doc) Dr. Gaur Pati (Post-Doc) Supported By:
Danielle Boddy Durham University – Atomic & Molecular Physics group Red MOT is on its way to save the day!
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Qiang Gu (顾 强) Cold atoms in the synthetic magnetic field Department of Physics, University of Science and Technology Beijing (北京科技大学 物理系) KITPC, Beijing,
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
Demonstration of Sub- Rayleigh Lithography Using a Multi-Photon Absorber Heedeuk Shin, Hye Jeong Chang*, Malcolm N. O'Sullivan-Hale, Sean Bentley #, and.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
Quantum Devices (or, How to Build Your Own Quantum Computer)
Colleen Downs Stephanie Pietromonaco Sanjay Talluri
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Degenerate Quantum Gases manipulation on AtomChips Francesco Saverio Cataliotti.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
3 He Polarization Tests at UIUC Danielle Chandler David Howell UIUC.
Using this method, the four wave transition linewidth was measured at several different frequencies of current modulation. The following plot shows the.
Coherent excitation of Rydberg atoms on an atom chip
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Blake Morell Daniel Bowser Trenton Wood. Contents Background Experimental Design & Outcome Implications Future Applications.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Study of Quantum Interference Phenomena in Cold Atoms
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Atoms Coupled to SQUIDs
Daniel Craft, Dr. John Colton, Tyler Park, Phil White, Brigham Young University.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
|| Quantum Systems for Information Technology FS2016 Quantum feedback control Moritz Businger & Max Melchner
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Alternate Gradient deceleration of large molecules
Quantum optomechanics: possible applications to
Quantum Engineering & Control
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Tunable Slow Light in Cesium Vapor
Heavy Ion Nuclear Physics Lab. Yukari MATSUO
Quantum phase magnification
Norm Moulton LPS 15 October, 1999
by Justin G. Bohnet, Brian C. Sawyer, Joseph W. Britton, Michael L
Entangling Atoms with Optical Frequency Combs
Efficient optical pumping and quantum storage in a Nd:YVO nanocavity
Integrated photonic platform for quantum information with continuous variables by Francesco Lenzini, Jiri Janousek, Oliver Thearle, Matteo Villa, Ben Haylock,
Presentation transcript:

Ideas for Experimental Realization of Neutral Atom Quantum Computing 演 講 者:蔡 錦 俊 成功大學物理系 年 10 月 18 日

Outline Motivation Trapping and manipulation of Single or Few Atoms Entanglement of two Macroscopic Objects

Motivation Using neutral atoms to realize quantum computing Advantages: Atoms, photons, and fields are involved Weak interactions with external fields Many internal states Long-lived coherence time Disadvantages: Exponential decrease of preparing efficiency Noise and imperfections in setup

Entanglement of two Macroscopic Objects / Nature 413, 400 (2001), Aarhur, Denmark. Experimental set-up and the sequence of optical pulses.

Entanglement of two Macroscopic Objects / Nature 413, 400 (2001), Aarhur, Denmark. Internal state of neutral Cs atoms and optical pumping 6s 2 S 1/2 F=4, m F -4, -3, -2, -1, 0, 1, 2, 3, 4 6p 2 P 3/2 F=3, m F -4, -3, -2, -1, 0, 1, 2, 3, 4 ++ Cs 6s 2 S 1/2 n=6 l=0 2S+1, S=1/2 J=1/2 Nuclear spin, I=7/2 F = J+I

Entanglement of two Macroscopic Objects / Nature 413, 400 (2001), Aarhur, Denmark. Sample: Two 3x3 cm paraffin coated cells place in a highly homogenous B field 0f 0.9 G. Coherence time of spin-state 5~30 msec Optical pumping: Cell 1 : |F=4, m F =4>; Cell 2 : |F=4, m F =-4> Optical pulses: 0.45msec, 0.5 mW at 852 nm with 700 MHz of blue detuned. Entangling pulse and verifying pulse are separated by 0.5 msec, no entanglement at 0.8 msec.

Entanglement of two Macroscopic Objects / Nature 413, 400 (2001), Aarhur, Denmark. Measurement Cos(  t) and Sin(  t) Special variance:  = (S ycos (  )) 2 + (S ysin (  )) 2 out

Entanglement of two Macroscopic Objects / Nature 413, 400 (2001), Aarhur, Denmark. Normalized special variance  EPR /  (J x ) vs. J x Below unity level for entangled State of the two atomic samples Maximum possible entanglement (dotted line) Shot noise of verifying pulse (dashed line) Degree of entanglement  = (35+7)%

Trapping and manipulation of Single or Few Atoms Single atom trap/ Science 293, 278 (2001), Bonn, Germany Normal MOT device Dipole Trap : Nd:YAG laser, =1064nm, counter propagated, Beam waist  0 ~ 30  m Dipole potential, U(z, t) = U 0 cos[  (  t-2z/ )]  controlled with two acousto-optic modulation (AOM) Detection: position sensitive LIF at Cs F=4  F’=5 and Repumping at F=3  F’=4 Advantages for dipole trapping: Trap all spin states Very long spin relaxation time ~ 30 sec High Modulation speed

Trapping and manipulation of Single or Few Atoms Single atom trap/ Science 293, 278 (2001), Bonn, Germany Experimental set-up

Trapping and manipulation of Single or Few Atoms Single atom trap/ Science 293, 278 (2001), Bonn, Germany Few atoms detection

Good for extracting definite number of neutral atoms from reservoir, Bose-Einstein condensation. Quantum Tweezer for Atoms Deterministic loading of single atom/PRL 89,70401(2002),Austin,USA Loading atom from a Condensate and dot potential The probability of extracting a single atom vs. dot speed. Using 1D BEC harmonic trap, N=10 5 and square dot well.

The End