KINETIC MODEL RESULTS FOR HEAVY-QUARK COALESCENCE R. L. THEWS UNIVERSITY OF ARIZONA Characterization of the Quark Gluon Plasma with Heavy Quarks JUNE 2008 Physikzentrum Bad Honnef
IN THE BEGINNING THERE WERE MATSUI & SATZ
IN-MEDIUM FORMATION (REGENERATION) HIGH ENERGY EVOLUTION OF MATSUI-SATZ: R plasma screening < R quarkonium SUPPRESSION in a static medium, or KHARZEEV-SATZ: Ionization with deconfined gluons Charm pair diffuse away, will not recombine during deconfinement phase or at hadronization NEW SCENARIO AT COLLIDER ENERGIES
Multiple ccbar pairs in high energy AA Collisions from extrapolation of low energy 20 from PHENIX electrons 40 from STAR electrons and K CENTRAL VALUES AT RHIC: AND AT LHC: ??
PROBE REGION OF COLOR DECONFINEMENT WITH MULTIPLE PAIRS OF HEAVY QUARKS Two Distinct Physical Scenarios: (1) Form Quarkonium in the Medium, where it competes with Suppression, and/or (2) Form Quarkonium during the Hadronization Transition
QUARKONIUM FORMATION MODELS IN REGION OF COLOR DECONFINEMENT STATISTICAL HADRONIZATION: P. Braun-Munzinger, J. Stachel, Phys. Lett B490 (2000) 196 [nucl-th/ ]. KINETIC IN-MEDIUM FORMATION: R. L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C63 (2001) [hep-ph/ ].
COLOR DECONFINEMENT ALLOWS THE INCOHERENT RECOMBINATION OF ALL PAIRS OF HEAVY QUARKS
MANY THEORETICAL INPUT PARAMETERS
Gold-plated signature for Regeneration SEARCH FOR J/PSI with x F > 1
OFF-DIAGONAL PAIRS POPULATE X_F > 1.0
FORMED J/PSI ALSO POPULATES X_F > 1.0
THE P_T DISTRIBUTION IS PEAKED NEAR ZERO
BUT THEY ONLY APPEAR NEAR THE RAPIDITY BOUNDARY
R. L. Thews and M. L. Mangano Phys. Rev. C73, (2006) [nucl-th/ ] 1.Generate sample of ccbar pairs from NLO pQCD (smear LO q t ) 2.Supplement with k t to simulate initial state and confinement effects 3.Integrate formation rate using these events to define particle distributions (no cquark-medium interaction) 4.Repeat with cquark thermal+flow distribution (maximal cquark-medium interaction) CAN Y AND P T SPECTRA ALONE PROVIDE SIGNATURES OF IN- MEDIUM FORMATION?
All combinations of c and cbar contribute Total has expected (N ccbar ) 2 / V behavior Prefactor is integrated flux per ccbar pair Do the J/Psi spectra retain a memory of the underlying charm quark spectra?
No REGENERATION FOR pp J/Psi, DIAGONAL PAIRS ALONE SHOULD FIT SPECTRA
EXTRACT ALLOWED =.75 GeV 2
DIAGONAL PAIRS – NO EXTRA PARAMETERS
Use dAu broadening to determine nuclear k t (Minimum Bias)
Central rapidity data exhibits anti-broadening!
S. Gavin and M. Gyulassy, Phys. Lett. B214 (1988) Nuclear broadening from Initial state parton scattering, extract / GeV 2 for Au-Au at RHIC, compare with /-.02 GeV 2 at fixed-target energy. Note: and n are correlated within given nuclear geometry. Proceed with analysis for muon data only: Collision numbers nbar correlated with centrality
Initial lambda estimate disfavors Direct Production
Revised lambda value allows 100% Direct Production
Regeneration is almost independent of centrality and lambda, and magnitude consistent with initial PHENIX data.
Comparison with Thermal + Transverse Flow c-Quark Distributions (Blast Wave) K.A.Bugaev, M. Gazdzicki, M.I.Gorenstein, Phys.Lett.B544,127(2002) S.Batsouli, S.Kelly, M.Gyulassy, J.L.Nagle, Phys.Lett.B557,26 (2003)
Determine fraction of regeneration using y=0 data
Consider combination of Direct and Regeneration (pQCD) with weights (1- and match data at y = 0
Predict p T Spectra which are in agreement with Data
Comparison with coalescence model: V Greco, C. M. Ko, R. Rapp, Phys. Lett. B595:202 (2004)
WHERE IS FORMATION FROM THERMAL CHARM?
In-Medium Formation (AKA regeneration, coalescence, recombination) as a mechanism for J/ production in central Au-Au at RHIC must reflect the underlying charm quark distributions. We find that normalized p T and y spectra alone can provide signatures of in-medium formation, independent of the absolute magnitude of recombination processes. We show that variation of with centrality provides characteristic signals. Baseline tests using pp and pA collisions provides a connection with initial pQCD charm quark distributions. SUMMARY
Centrality dependence and shapes of spectra are consistent with a 10 – 20% fraction produced in-medium from recombination of pQCD charm quarks. PHENIX measurements of y spectra in AA collisions now exhibit some narrowing as predicted for in-medium formation. p T spectra do not indicate an obvious contribution from recombination of thermalized charm Robust predictions require complete set of constraints from pp and pA.