VLSI Digital System Design Datapath Operations and Ripple-Carry Add.

Slides:



Advertisements
Similar presentations
Kuliah Rangkaian Digital Kuliah 7: Unit Aritmatika
Advertisements

Verilog Descriptions of Digital Systems
Cs 1110 Ch 4-1 Combinational Logic. ° Introduction Logic circuits for digital systems may be: °2°2 combinational sequential OR A combinational circuit.
Addition (2). Outline Full Adder 3-Bit Adder 2’s Complement Subtraction.
ECE 331 – Digital System Design
Arithmetic II CPSC 321 E. J. Kim. Today’s Menu Arithmetic-Logic Units Logic Design Revisited Faster Addition Multiplication (if time permits)
Lecture 14 Today we will Learn how to implement mathematical logical functions using logic gate circuitry, using Sum-of-products formulation NAND-NAND.
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 25: Datapath Subsystems 1/4 Prof. Sherief Reda Division of Engineering,
Lecture 8 Arithmetic Logic Circuits
Design and Implementation of VLSI Systems (EN1600) Lecture 26: Datapath Subsystems 2/4 Prof. Sherief Reda Division of Engineering, Brown University Spring.
Lecture 1: Introduction to Digital Logic Design CK Cheng Tuesday 4/1/02.
Fall 2008EE VLSI Design I - © Kia Bazargan 1 EE 5323 – VLSI Design I Kia Bazargan University of Minnesota Adders.
ECE 301 – Digital Electronics
ENGIN112 L12: Circuit Analysis Procedure September 29, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 12 Circuit Analysis Procedure.
4-bit adder, multiplexer, timing diagrams, propagation delays
Chapter 5 Arithmetic Logic Functions. Page 2 This Chapter..  We will be looking at multi-valued arithmetic and logic functions  Bitwise AND, OR, EXOR,
VLSI Digital System Design 1.Carry-Save, 2.Pass-Gate, 3.Carry-Lookahead, and 4.Manchester Adders.
Part 2: DESIGN CIRCUIT. LOGIC CIRCUIT DESIGN x y z F F = x + y’z x y z F Truth Table Boolean Function.
Adders, subtractors, ALUs
Combinational Circuits
Combinational Circuits
Combinational Circuits
SUPLEMENTARY CHAPTER 1: An Introduction to Digital Logic The Architecture of Computer Hardware and Systems Software: An Information Technology Approach.
Digital Arithmetic and Arithmetic Circuits
ADDERS Half Adders Recall that the basic rules of binary addition are as indicated below in Table 2-9. A circuit known as the half-adder carries out these.
WEEK #10 FUNCTIONS OF COMBINATIONAL LOGIC (ADDERS)
Computer Organization 1 Logic Gates and Adders. Propositions –Venn Diagrams.
Chapter 6-1 ALU, Adder and Subtractor
Arithmetic Building Blocks
ECE 3110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Adders, subtractors, ALUs.
Digital Electronics Lecture 6 Combinational Logic Circuit Design.
Computer Science 101 Circuit Design - Examples. Sum of Products Algorithm Identify each row of the output that has a 1. Identify each row of the output.
Arithmetic Functions BIL- 223 Logic Circuit Design Ege University Department of Computer Engineering.
ECE 3110: Introduction to Digital Systems Chapter 5 Combinational Logic Design Practices X-OR gates and Parity circuits Comparators Adders, subtractors,
1 Lecture 6 BOOLEAN ALGEBRA and GATES Building a 32 bit processor PH 3: B.1-B.5.
Abdullah Said Alkalbani University of Buraimi
1 CS 151: Digital Design Chapter 4: Arithmetic Functions and Circuits 4-1,2: Iterative Combinational Circuits and Binary Adders.
EE2174: Digital Logic and Lab Professor Shiyan Hu Department of Electrical and Computer Engineering Michigan Technological University CHAPTER 8 Arithmetic.
Universal college of engineering & technology. .By Harsh Patel)
1 Ethics of Computing MONT 113G, Spring 2012 Session 5 Binary Addition.
Computer Architecture
1 IKI20210 Pengantar Organisasi Komputer Kuliah No. 23: Aritmatika 18 Desember 2002 Bobby Nazief Johny Moningka
COMBINATIONAL LOGIC.
CEC 220 Digital Circuit Design
CHAPTER 2 Digital Combinational Logic/Arithmetic Circuits
ECE 320 Homework #4 1. Using 8 data input selector logic (MUX), implement the following two functions: a) F(A,B,C)=S 0 S 2 S 3 S 5 b) F(A,B,C,D)=P 0 +P.
1 Combinational Logic EE 208 – Logic Design Chapter 4 Sohaib Majzoub.
Combinational Circuit Design. Digital Circuits Combinational CircuitsSequential Circuits Output is determined by current values of inputs only. Output.
Mehmet Can Vuran, Instructor University of Nebraska-Lincoln Acknowledgement: Schematics adapted from those provided by the authors Hennessey and Patterson.
Gates AND, OR, NOT NAND, NOR Combinational logic No memory A set of inputs uniquely and unambiguously specifies.
Number Representation (Part 2) Computer Architecture (Fall 2006)
Lecture #23: Arithmetic Circuits-1 Arithmetic Circuits (Part I) Randy H. Katz University of California, Berkeley Fall 2005.
1 Ethics of Computing MONT 113G, Spring 2012 Session 4 Binary Addition.
Simple ALU  Half adder  Full adder  Constructing 4 bits adder  ALU does several operations  General ALU structure  Timing diagram of adder  Overflow.
ECE 3110: Introduction to Digital Systems Chapter 5 Combinational Logic Design Practices Adders,subtractors, ALUs.
President UniversityErwin SitompulDigital Systems 7/1 Lecture 7 Digital Systems Dr.-Ing. Erwin Sitompul President University
UNIT 8 COMBINATIONAL CIRCUIT DESIGN AND SIMULATION USING GATES
ETE 204 – Digital Electronics Combinational Logic Design Single-bit and Multiple-bit Adder Circuits [Lecture: 9] Instructor: Sajib Roy Lecturer, ETE,ULAB.
Arithmetic Circuits I. 2 Iterative Combinational Circuits Like a hierachy, except functional blocks per bit.
Presented by A. Maleki Fall Semester, 2010
ECE 3130 Digital Electronics and Design
Multiplexer.
FUNCTION OF COMBINATIONAL LOGIC CIRCUIT
HALF ADDER FULL ADDER Half Subtractor.
EEL 3705 / 3705L Digital Logic Design
Number Systems and Circuits for Addition
Математици-юбиляри.
Multiple function unit design
XOR Function Logic Symbol  Description  Truth Table 
Presentation transcript:

VLSI Digital System Design Datapath Operations and Ripple-Carry Add

Structured Design Qualities 1.Hierarchy 2.Regularity 3.Modularity 1.Well-defined interface 4.Locality 1.Information hiding

Magnitude Comparator Example 1.Separate data path from control blocks - = a b Control z Data path Control blocks

Datapath Organization ● Design one bit slice, then replicate it b1b1 a1a1 -= 0mux z1z1 b0b0 a0a0 -= 0mux z0z0 b3b3 a3a3 -= 0mux z3z3 b2b2 a2a2 -= 0mux z2z2 Control Direction of data flow Directions of control flow Data path Control blocks

Full Adder Truth Table ● cabsco = carry out ● s= a ^ b ^ c(1 or 3 inputs high) ● co= ab + ac + bc(2 or 3 inputs high)

Full Adder Equations ● s= a ^ b ^ c(1 or 3 inputs high) ● co= ab + ac + bc(2 or 3 inputs high) = ab + c(a + b) a b c a b co c s a b

Exclusive-Or Pull-Up Network Common Subexpression Elimination ● s = cab + ca'b' + c'a'b + c'ab' (1 or 3 inputs high) a' b' c' a b a c a' b' c' a b a b' c a' b c b' c' a b a b' c a' b

Exclusive-Or Pull-Down Network Common Subexpression Elimination ● s' = ba'c + bac' + b'ac + b'a'c' (0 or 2 inputs high) a' b c a c' a b' a' b c a b c' a b' c a' b' c' a' b c a c' a b' c a' c'

Exclusive-Or Circuit ● s = abc + ab'c' + a'b'c + a'bc' b' c' s a' b c a b' c' a b a c a' b c a c' a b' a'

Carry Pull-Up Network ● co= ab + ac + bc = bc + a(b + c) = ac + b(a + c) = ab + c(a + b) a' b' a' c' b'

Carry Pull-Down Network ● co'= ( a* b+ c*( a+ b ) )' = ( a* b )'*( c*( a+ b ) )' = ( a'+ b' )*( c'+( a+ b )' ) = ( a'+ b' )*( c'+ a'* b' ) a' b' a' b' c'

Carry Circuit ● co= ab + c(a + b) co a' b' a' b' c' a' b' a' c' b'

Full Adder Circuit ● s= abc + ab'c' + a'b'c + a'bc' ● co= ab + c(a + b) b' c' a' b c a co a' b' a' b' c' a' b' a' c' b' s a' b' c' a b a c a' b c a c' a b' a'

Alternative Sum Equation ● cabscoco' ● s= abc + co'(a + b + c)

Alternative Carry Out Circuit ● s= abc + co'(a + b + c) ● cp= co' = ( ab + c(a + b) )' cp a b a b c a b a c b

Alternative Sum Pull-Down Network ● s'= ( abc + cp(a + b + c) )' a b abc cp c

Alternative Full Adder Circuit ● cp'= ( ab + c(a + b) )' ● s'= ( abc + cp(a + b + c) )' a b abc cp c bc a a b c a b a b c a b a c b co s

Ripple-Carry Adder ● Total add time = n*(delay of one FA) b1b1 a1a1 FA b0b0 a0a0 b3b3 a3a3 b2b2 a2a2 s2s2 s1s1 s0s0 s3s3 carry in carry out Critical path

Faster Ripple-Carry Adder ● Delete carry inverter in alternate Fas b1b1 a1a1 b0b0 a0a0 b3b3 a3a3 b2b2 a2a2 s2s2 s1s1 s0s0 s3s3 carry in carry out FA Critical path

Ripple-Carry Subtractor ● a – b = a + (~b) + 1 b1b1 a1a1 FA b0b0 a0a0 b3b3 a3a3 b2b2 a2a2 s2s2 s1s1 s0s0 s3s3 carry in carry out

Ripple-Carry Adder-Subtractor ● Conditionally invert b ● Conditionally assert carry in b1b1 a1a1 FA b0b0 a0a0 b3b3 a3a3 b2b2 a2a2 s2s2 s1s1 s0s0 s3s3 subtract carry out