Vacuum & Particles 陳 鎰 鋒 中央大學 物理系 2009.11.27. 粒子從那裡來 ? 真空 Heavy Ion e+e-  3 jets   e+e- g*  q q g.

Slides:



Advertisements
Similar presentations
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Advertisements

Phi-Psi, Feb.-Mar., 2006, S.Uehara1 Experimental studies of charmonia in two-photon collisions at Belle S.Uehara (KEK) for the Belle Collaboration e +
Anomalous Pion Production in High Energy Particle Collisions Alexander Bylinkin, Andrey Rostovtsev XV Moscow School of Physics XXXX ITEP Winter School.
Excited Charm and K0sK0s Resonance Production at ZEUS V. Aushev For the ZEUS Collaboration XXXIX International Symposium on Multiparticle Dynamics ''Gold.
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
1 Heavy Ion Collisions at LHC in a Multiphase Transport Model  A multi-phase transport (AMPT) model  Rapidity and transverse momentum distributions 
Forward-Backward Correlations in Relativistic Heavy Ion Collisions Aaron Swindell, Morehouse College REU 2006: Cyclotron Institute, Texas A&M University.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
Jet Physics with identified particles at RHIC and the LHC R. Bellwied (Wayne State University) Is hadron production in medium different than in vacuum.
Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
P461 - particles III1 EM Decay of Hadrons If a photon is involved in a decay (either final state or virtual) then the decay is at least partially electromagnetic.
1 Baryonic Resonance Why resonances and why  * ? How do we search for them ? What did we learn so far? What else can we do in the.
Forward-Backward Correlations in Heavy Ion Collisions Aaron Swindell, Morehouse College REU Cyclotron 2006, Texas A&M University Advisor: Dr. Che-Ming.
1 相对论重离子碰撞中  介子的产生 陈金辉 中国科学院上海应用物理研究所 QCD 相变与重离子碰撞物理国际暨 2008 年 7 月 10 号 -12 号 Many thanks to: X. Cai, S. Blyth, F. Jin, H. Huang, G. Ma,
STAR STRANGENESS! K0sK0s    K+K+ (Preliminary)         
New Particles X(3872) Y(4260) X(3940) University of Hawai’i Future of Heavy Flavors ИТЗФ 7/23-24/06 Z(3930) Y(3940) Ѕтефан Олавич ????
Measurement of R at CLEO - Jim Libby1 Measurement of R at CLEO Jim Libby University of Oxford.
CLEOIII Upsilon results In principle, includes: CLEO-III dipion transitions between vectors –Complements CLEO05 results on transitions between L=1 P-states.
Resonance Dynamics in Heavy Ion Collisions 22nd Winter Workshop on Nuclear Dynamics , La Jolla, California Sascha Vogel, Marcus Bleicher UrQMD.
J/Ψ Suppression in QGP Outline:
Direct photon production in pp and AA collisions 合肥, Dec 5 - 7, 2009 刘复明 华中师范大学粒子物理研究所 FML, T.Hirano, K.Werner, Y. Zhu, Phys.Rev.C79:014905,2009. FML,
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
Sourav Tarafdar Banaras Hindu University For the PHENIX Collaboration Hard Probes 2012 Measurement of electrons from Heavy Quarks at PHENIX.
Fragmentation in e + -e  Collisions Dave Kettler Correlations and Fluctuations Firenze July 7-9, 2006 p hadron ee e+e+ , Z 0 LEP PETRA color dipole.
Feb High-pT Physics at Prague1 T. Horaguchi Hiroshima University Feb. 4 for the 4 th International Workshop.
Philip J. Clark University of Edinburgh Rare B decays The Royal Society of Edinburgh 4th February 2004.
P Spring 2002 L14Richard Kass Quantum Chromodynamics Quantum Chromodynamics (QCD) is the theory of the strong interaction. QCD is a non-abelian gauge.
ParticleZoo. The Standard Model The body of currently accepted views of structure and interactions of subatomic particles. Interaction Coupling Charge.
Exclusive Production of Hadron Pairs in Two-Photon Interactions Bertrand Echenard University of Geneva on behalf of the LEP collaborations Hadronic Physics.
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
P Spring 2003 L13Richard Kass Quantum Chromodynamics Quantum Chromodynamics (QCD) is the theory of the strong interaction. QCD is a non-abelian gauge.
From Luigi DiLella, Summer Student Program
1 Asymptotics in Relativistic Nuclear Physics A.Malakhov Joint Institute for Nuclear Research, Dubna The 1 st CBM-Russia-JINR Collaboration Meeting, Dubna,
 production in p+p and Au+Au collisions in STAR Debasish Das UC Davis (For the STAR Collaboration)‏
U N C L A S S I F I E D 7 Feb 2005 Studies of Hadronic Jets with the Two-Particle Azimuthal Correlations Method Paul Constantin.
1 Search for the Effects of the QCD Color Factor in High-Energy Collisions at RHIC Bedanga Mohanty LBNL  Motivation  Color Factors  Search for Color.
Physical Program of Tau-charm Factory V.P.Druzhinin, Budker INP, Novosibirsk.
Some Issues in Charmonium Physics Some Issues in Charmonium Physics K-T Chao Peking University.
ParticleZoo. September 01 W. Udo Schröder: History NS 2 Nucleons Are Not Elementary Particles! p e-e- e-e- hadron jet Scatter high-energy electrons off.
Quarknet Syracuse Summer Institute Strong and EM forces 1.
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
Systematic measurement of light vector mesons at RHIC-PHNEIX Yoshihide Nakamiya Hiroshima University, Japan (for the PHENIX Collaboration) Quark Matter.
June 25, 2004 Jianwei Qiu, ISU 1 Introduction to Heavy Quark Production Jianwei Qiu Iowa State University CTEQ Summer School on QCD Analysis and Phenomenology.
Measurements of thermal photons in heavy ion collisions with PHENIX - Torsten Dahms - Stony Brook University February 8 th, 2008 Real photons at low p.
Direct photon interferometry D.Peressounko RRC “Kurchatov Institute”
Measurement of photons via conversion pairs with PHENIX at RHIC - Torsten Dahms - Stony Brook University HotQuarks 2006 – May 18, 2006.
Differentiating Quark and Gluon Jets Why and How ? Rene Bellwied (WSU) STAR high pt retreat Marin County, Jan 17-19, 2004.
The Zoo of Subatomic Particles
Quark Matter 2002Falk Meissner, LBNL Falk Meissner Lawrence Berkeley National Laboratory For the STAR Collaboration Quark Matter Coherent.
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
Olena Linnyk Charmonium in heavy ion collisions 16 July 2007.
K 0 S and  production at ZEUS, A. Savin, University of Wisconsin DIS 2006, April 22, K 0 S and  production at ZEUS Alexander A. Savin University.
BY A PEDESTRIAN Related publications direct photon in Au+Au  PRL94, (2005) direct photon in p+p  PRL98, (2007) e+e- in p+p and Au+Au 
High Density Matter and Searches for Huan Z. Huang Department of Physics and Astronomy University of California, Los Angeles The STAR Collaboration.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
Jorgen D’Hondt University of Brussels - DELPHI Collaboration l WW  qqQQ events collected at LEP2 l Colour Reconnection effect at LEP2 l Model dependent.
Two Photon Physics at Belle Augustine E. Chen BELLE Collaboration National Central University June 6, 2006 Charm 2006.
Present status of Charm Measurements
Hadron Physics at Belle
Lecture 04 - Hadrons Quarks multiplets Hadron decays Resonances
Open heavy flavor analysis with the ALICE experiment at LHC
Section IX - Quark Model of Hadrons
Heavy Ion Physics in RUN14-16
Section VII - QCD.
Charmonium dynamics in heavy ion collisions
Identified Charged Hadron Production
Presentation transcript:

Vacuum & Particles 陳 鎰 鋒 中央大學 物理系

粒子從那裡來 ? 真空 Heavy Ion e+e-  3 jets   e+e- g*  q q g

energy Vacuum Space Time energy mass

Bremsstrahlung (QCD) Bremsstrahlung (QED)

e+e-  g*  Hadrons e+e-  g e+e-  g g*  g Hadrons e+e-  QQ  Hadrons ggg  Hadrons e+e-  e+e- gg *  e+e- Hadrons Heavy Ion Collision Au+Au  ??  Hadrons Vacuum g g gg ggg Annihilation Two-Photon Quarkonium Decay

D meson ~0.02 J/  > 5.3

Quarkonium  ggg or ggg / e+e-  qq (CLEO) √S ~ 10 GeV ggg / qq

e+e-  g*  Hadrons e+e-  g e+e-  g g*  g Hadrons e+e-  QQ  Hadrons ggg  Hadrons e+e-  e+e- gg  e+e- Hadrons Heavy Ion Collision Au+Au  ??  Hadrons EM Strong Vacuum Two-Photon Annihilation Quarkonium Decay

Space-Time structure of Vacuum T < s S < m Correlation – charge, flavor, baryon Coherence  Quantum Mechanics

Principle of HBT interferometry (Hanbury-Brown-Twiss) Quantum Correlation size

e+ e-, PP Heavy Ion QGP R ~ fm

D X D Quantum Correlation EPR Y(4S) Y(4040)  D*D*  DD p p  DD J/  suppression DT, DE =Dmc 2 the heavier, the earlier J/Y f T S

e+e-  g*  Hadrons e+e-  g e+e-  g g*  g Hadrons e+e-  QQ  Hadrons ggg  Hadrons e+e-  e+e- gg  e+e- Hadrons Heavy Ion Collision Au+Au  ??  Hadrons EM Strong Weak ? B or D meson decays (top?) Vacuum Two-Photon Annihilation Quarkonium Decay W ggg ggg Z g “Extended Source” e.g. D 0  K - p + ; K - K + cu  su [d u] ; s[u s]u Extra dimension?

e+e-  g*  Hadrons e+e-  g e+e-  g g*  g Hadrons e+e-  QQ  Hadrons ggg  Hadrons e+e-  e+e- gg  e+e- Hadrons Heavy Ion Collision Au+Au  ??  Hadrons Extra dimension? EM Strong Weak ? B or D meson decays (top?) Vacuum Two-Photon Annihilation Quarkonium Decay

e+e-  --> h+h- e+e- Two Photon e+e-    h+h- (annihilation) e+e-  e+e-   h+h-  (ISR)

e+e-    h+h-

Two-Photon from Belle gg  p+p-; K+K- p 0 p 0 ; K 0 s K 0 s p 0 h; hh; PP

events W distribution of gg  p 0 h W: invariant mass (p 0 h ) or W gg

Angular dependence of differential cross sections in different W regions 1/sin 4  *

Cross section  (   hh)  = a*W -n N = 6 for mesons  (k+k-)/  (  +  -) ~ 1 k s 0 (ds) / K+(us) ~ 2/25 Ratio of  (k s 0 k s 0 )/  (k+k-) is not const ?? 

W dependence of the cross section ratio of p 0 h to p 0 p 0

gg  p+p- gg  K+K-

Cross section  (   hh)  = a*W -n N = 6 for mesons N = 10 for baryons PP N = 15.1±1.1± ±2.4±1.5 N = 10 Asymptotic? W: 2.5 – 2.9 W: 3.2 – 4.0  p 0 h 10.5 ± 1.2 ± 0.5

s(p 0 p 0 )/s(p+p-)

W distribution of gg  

gg  pp

gg  PP p+p- gg  h+h-

gg  PP p+p-  PP “R” gg  PP K+K-

W p + p - and W K+K- distributions (W  ) in gg --> PP K+K- / p+p- reactions (gg  K+K- / gg   +  -)

gg  KK

Charge Correlation in gg  pp k+k- process Opp-sign combinations (PK-, PK+) Like-sign combinations (PK-, PK+)

gg  PP p+p- e+e-  D*- D+ p+p-

e+e-  D*- D+ p+p- Opp-sign combinations (D*-p+, D+p-) Like-sign combinations (D*-p-, D+p+)

gg  PP p+p- e+e-  D*- D+ p+p-

e+e-  g*  Hadrons e+e-  g e+e-  g g*  g Hadrons e+e-  QQ  Hadrons ggg  Hadrons e+e-  e+e- gg  e+e- Hadrons Heavy Ion Collision Au+Au  ??  Hadrons Extra dimension? EM Strong Weak ? B or D meson decays (top?) Vacuum Two-Photon Annihilation Quarkonium Decay

events W distribution of p 0 h W: invariant mass (p 0 h ) or W gg

CLEO_c -- DD (DD,DD*,D s D s ) & DD  Charm-Production in e+e- Annihilation around 4 GeV hep-ex/ (CC) Energy level

Energy Level DD threshold Meson (Quarkonium) X, Y, Z (Tetra Quark) D*   D Jets Formation Distance C C C C C C CC

Meson immerges in Vacuum C C Y(4040) s s u u Y(4040)  D*D*, DsDs 顏東茂 T.M. Yan Mix of energy levels width

Cluster (Herwig/Weber)

String (Pythia/LUND)

  f 0 (980)   +  - ss or k+k- Virtual K+K- is needed p 0 / r = (dd - uu) / 2 ½ Time

D+/D*+ = 0.36 ± 0.10 ± 0.20 PS/V ratio D+ meson fragmentation function (‘85) c-quark  D-meson e+e-  c c  D + x

V/PS Seuster ‘06

e+e-  c c  DD + X D X D

L L Correlation (OPAL) LL Rapidity y = ½ ln[ (E + p ║ ) / (E - p ║ )]

Short range correlation Long range correlation

Belle data MC (phase) e+e-  D* - D 0 p + (USTC)  D* D**, D D** “Jet property”

K T vs Rapidity 10 GeV e+e-  c c events

真空如何產生粒子 ? g*  q q g

無中生有 E = MC 2

energy Vacuum Space Time energy mass

Meson immerges in Vacuum C C Y(4040) s s u u Y(4040)  D*D*, DsDs

Energy Level DD threshold Meson (Quarkonium) X, Y, Z (Tetra Quark) D*   D Jets Formation Distance C C C C C C CC

Particle production via 1. ggg / qq ggg/gg 2.   hh  *  hadrons 3.   PPhh  *  DD  4. e+e-  cc, XYZ, DD, DD  jets

Space-Time structure of Vacuum T < s S < m Correlation – charge, flavor, baryon Coherence  Quantum Mechanics

e+e-  +  -  E+e-  pi+pi- g